

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

ORGANIZAÇÃO DO CURRÍCULO

Educação Profissional Técnica de Nível Médio com Habilitação em **Técnico em Eletrotécnica**

EIXO TECNOLÓGICO: Controle e Processos Industriais 35 aulas semanais

COMPONENTES CURRICULARES DE APROFUNDAMENTO CURSO TÉCNICO EM ELETROTÉCNICA

1ª Série

INSTALAÇÕES ELÉTRICAS PREDIAIS

OBJETIVOS:

Executar projetos de instalações elétricas de uma edificação, aplicando normas técnicas da legislação pertinente e interpretar catálogos e manuais de materiais, dentro das normas de segurança no trabalho.

- NBR 5444 Simbologia e convenções elétricas;
- Esquemas multifilar; Esquemas unifilar; Esquema funcional;
- Conhecimentos sobre ferramentas de uso geral e específico em eletrotécnica.
- Conhecimento de componentes de fixação e equipamentos elétricos.
- Emendas em condutores rígidos e flexíveis.
- Solda e isolamento de emendas.
- Operações com eletrodutos: serrar, rosquear e elaborar curvas.
- Operações: serrar, limar e furar.
- Montagens em tubulações, caixas, painéis, conectores e componentes.
- Materiais elétricos.
- Utilização de esquemas residenciais.
- Dispositivos de comando de iluminação, tomadas e sinalização:
- Instalação de interruptores, disjuntores;
- Instalação de luminárias incandescente, fluorescente e LED;
- Instalação de minuteria;
- Instalação interruptor presença; relê fotoelétrico, interruptor horário; chave-boia.
- Disjuntores de corrente residual (DR);
- Instalação de tomadas residenciais e industriais; Instalação de ventiladores de teto;
- Montagem de quadro de distribuição;
- Medidores básicos de corrente alternada e alicate amperímetro.

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

COMPETÊNCIAS:

 Executar projetos de instalações elétricas de uma edificação, aplicando normas técnicas da legislação pertinente e interpretar catálogos e manuais de materiais, dentro das normas de segurança no trabalho.

HABILIDADES:

- Diferenciar os dispositivos de Controle e Proteção de uma instalação elétrica de baixa tensão;
- Compreender as funções básicas de cada equipamento elétrico e seus componentes internos:
- Utilizar corretamente os equipamentos de acordo com as necessidades apresentadas;
- Especificar os materiais e componentes de uma instalação elétrica;
- Desenhar diagramas elétricos de instalações de baixa tensão.

BASES TECNOLÓGICAS:

- Simbologia e convenções elétricas;
- Materiais elétricos:
- Normas aplicáveis.
- Utilização de esquemas residenciais: Esquemas multifilar; Esquemas unifilar; Esquema funcional;
- Circuitos elétricos e dispositivos de proteção;
- Dispositivos de comando de iluminação, tomadas e sinalização:
- Instalação de interruptores, disjuntores;
- Instalação de luminárias incandescente e fluorescente;
- Instalação relé de impulso, minuteria;
- Instalação interruptor presença; relê fotoelétrico, interruptor horário;
- Disjuntores de corrente residual (DR);
- Instalação de tomadas residenciais e industriais;
- Instalação de ventiladores de teto;
- Montagem de quadro de distribuição;
- Uso de Voltímetro e Alicateamperímetro;

BIBLIOGRAFIA BÁSICA:

CAVALIN, Geraldo e CERVELIN, Severino. **Instalações Elétricas Prediais**. 21 ed. São Paulo: Érica. 2011

BIBLIOGRAFIA COMPLEMENTAR:

WLADIKA, Walmir Eros. **Curso Técnico em eletrotécnica**, módulo 2, livro 9: Especificação e aplicação de materiais. Curitiba: Base Editorial, 2008

LIMA Filho, Domingos Leite. **Projetos de Instalações Elétricas Prediais**. 12 ed. São Paulo: Érica. 2011

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

ELETRICIDADE BÁSICA

OBJETIVOS:

Proporcionar ao estudante a capacitação básica necessária acerca dos fundamentos da eletricidade, bem como o conhecimento de todos os equipamentos de medição existentes no mercado de eletricidade a fim de possibilitar a elaboração de projetos práticos. Qualificação do estudante, ampliando o repertório de conhecimentos básicos e específicos e estabelecendo padrões de qualidade do serviço/desempenho.

EMENTA

- Equipamentos de medição de eletricidade;
- Conceituação de corrente elétrica, tensão elétrica; resistência elétrica e unidades elétricas;
- Fontes da eletricidade:
- Simbologia dos elementos de um circuito elétrico;
- Medidas elétricas em CC;
- Associação de resistências;
- Lei de Ohm;
- Divisor de tensão e divisor de corrente;
- Leis de Kirchoff e aplicações;
- Métodos de análise de circuitos;
- Circuitos em ponte;
- Componentes e Equipamentos elétricos e eletrônicos;
- Medidores elétricos; montagem de circuitos eletroeletrônicos;
- Apresentação de projetos eletroeletrônicos.
- Potência elétrica, trabalho e energia;
- Softwares para simulação de circuitos elétricos.

COMPETÊNCIAS:

- Elaborar projetos práticos envolvendo conhecimentos de eletricidade adquiridos;
- Resolver problemas teóricos e práticos envolvendo resistência elétrica equivalente, lei de Ohm, utilização do código de cores para resistores;

HABILIDADES:

- Habilidades manuais operacionais;
- Analisar circuitos elétricos em associações série, paralela e mista, utilizando as ferramentas teóricas de análise:
- Entender os processos de geração de corrente contínua;

- Conceitos de corrente, tensão e resistência elétrica;
- Fontes da eletricidade;
- Circuitos elétricos em CC:
- Medidas elétricas em CC;
- Circuitos eletroeletrônicos.
- Medição e verificação de grandezas elétricas:
- Medidores analógicos e digitais.

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Resolver problemas teóricos práticos е envolvendo resistência elétrica equivalente, lei de Ohm, leis de Kirchhoff, análise de malhas e cálculo de potência elétrica:
- Resolver problemas teóricos e práticos envolvendo resistência elétrica, capacitância e indutância em circuitos elétricos;
- Explicar o processo de geração em corrente contínua.
- Utilizar os equipamentos de segurança; Leitura e interpretação de esquemas e projetos eletroeletrônicos.

- Aplicar os desenvolvimentos laborais e comportamentais do trabalho em laboratório. associados aos exercícios práticos de formação prática acadêmica е profissional.
- Conhecer os equipamentos de medição existentes no mercado de eletricidade;
- Medidores de grandezas elétricas (Voltímetro, Ohmímetro, Amperimetro, Wattímetro e Multímetro).
- Montagem de circuitos eletrônicos em matriz de contatos (protoboard).
- Utilização de fontes e calibração de fontes de corrente contínua;
- Código de cores;
- Associação de resistores;
- Lei de Ohm e suas aplicações;
- Leis de Kirchoff e aplicações;
- Correntes de Malhas e Tensões de nós;
- Correntes de Maxwell:
- Circuitos em ponte (Wheatstone, Kelvin, etc);
- Potência elétrica, trabalho e energia;
- Aula prática para consolidar os conceitos de: Resistores e código de cores, Lei de Ohm, potência elétrica e lei de Joule, série circuito e circuito paralelo de resistores. circuito misto de resistores. divisores de tensão, máxima transferência de potência, geradores elétricos, pontes de Wheatstone, leis Kircchoff.

BIBILIOGRAFIA BÁSICA:

WOLSKI, Belmiro. Eletricidade Básica. Ed. BASE

GUSSOW, Milton. Eletricidade Básica. São Paulo: MAKRON Books do Brasil Editora.

BIBLIOGRAFIA COMPLEMENTAR:

CAPUANO, Francisco. Laboratório de Eletricidade e Eletrônica. Editora Érica

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

ELETRICIDADE BÁSICA

OBJETIVOS:

Adquirir conhecimentos teóricos e práticos acerca dos princípios básicos de eletricidade em corrente elétrica alternada, elementos reativos e resistivos para aplicações em instalações prediais, utilizando-se de todo aparato profissional em uso no mercado de trabalho atualmente. Elaborar projetos práticos e qualificar equipe para otimização do trabalho estabelecendo padrões de qualidade.

EMENTA

- Capacitores e aplicações;
- Indutores e aplicações;
- Constantes de tempo para indutores e capacitores;
- Equipamentos de medição de eletricidade;
- Associação de indutores e capacitores;
- Circuitos com indutores e capacitores;
- Corrente elétrica alternada valores médio, eficaz e pico a pico;
- Diagrama fasorial;
- Medidas elétricas em circuitos de corrente alternada.
- Circuito puramente resistivo;
- Circuito puramente indutivo;
- Circuito puramente capacitivo.
- Circuitos RL Associação série e paralelo;
- Circuitos RC Associação série e paralelo;
- Circuitos RLC Associação série e paralelo.
- Fator de Potência;
- Componentes e Equipamentos elétricos e eletrônicos;
- Medidores elétricos;
- Osciloscópio e Gerador de Sinais;
- Montagem de circuitos eletroeletrônicos;
- Apresentação de projetos eletroeletrônicos.
- Circuitos monofásicos: Potência C.A. aparente, ativa e reativa;
- Circuitos trifásicos equilibrados: Ligação estrela triângulo;
- Tensão e corrente de fase e linha. Potência C.A. aparente, ativa e reativa.
- Softwares para simulação de circuitos elétricos.

COMPETÊNCIAS: **BASES TECNOLÓGICAS:** HABILIDADES: Relacionar os princípios Capacitores e Indutores e básicos de eletricidade em suas aplicações em corrente Entender o comportamento corrente alternada aplicandode resistores, indutores e contínua; os nas instalações elétricas capacitores em circuitos de • Corrente elétrica alternada: Corrente Alternada; prediais;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Utilizar os princípios básicos de eletricidade em corrente alternada nas instalações elétricas prediais;
- Envolver-se na melhoria da qualidade e utilização da energia elétrica.
- Elaborar projetos práticos
- Resolver problemas teóricos práticos envolvendo impedância elétrica, resistência elétrica equivalente, lei de Ohm, leis de Kirchhoff, análise malhas, cálculo de potência capacitância elétrica, indutância circuitos em elétricos:
- Resolver problemas teóricos e práticos envolvendo Habilidades manuais operacionais;
- Utilizar os equipamentos de segurança;
- Aplicar os desenvolvimentos laborais e comportamentais do trabalho em laboratório, associados aos exercícios práticos de formação acadêmica e a prática profissional.

- Entender os princípios de funcionamentos dos circuitos lógicos.
- Conhecer a geração e a transmissão de energia elétrica e em especial entender os processos de geração de corrente alternada;
- Relacionar a geração das fontes alternativas de energia elétrica, vantagens e aplicações;
- Conhecer os equipamentos de medição existentes no mercado de eletricidade;
- Analisar circuitos elétricos em associações série, paralela e mista, utilizando as ferramentas teóricas de análise:
- Realizar leitura e interpretação de esquemas e projetos eletroeletrônicos.

- Associação de indutores e capacitores;
- Impedância Elétrica;
- Medidas elétricas em circuitos de corrente alternada.
- Medidores analógicos e digitais.
- Medidores de grandezas elétricas em corrente alternada (Voltímetro, Ohmímetro, Amperímetro, Wattímetro, Cossefímetro; Frequencímetro e Multímetro).
- Utilização de fontes e calibração de fontes de corrente alternada;
- Medidas de sinais elétricos e calibração de instrumentos em CC e CA: Osciloscópio; Gerador de sinais.
- Montagem de circuitos eletrônicos em matriz de contatos (protoboard).
- Circuito puramente resistivo:
- Circuito puramente indutivo:
- Circuito puramente capacitivo;
- Números complexos aplicados a Eletricidade;
- Circuitos RL Associação série e paralelo;
- Circuitos RC Associação série e paralelo;
- Circuitos RLC -Associação série e paralelo;
- Fator de Potência;
- Circuitos monofásicos:
 Potência C.A.
- Circuitos trifásicos equilibrados: Ligação estrela – triângulo;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

•	Tensão	е	corrente	de	fase
e li	nha;				
	D-44:	_ /	~ ^		

- Potência C.A.
- Medições em circuito trifásico (método dos dois wattímetros);
- Medição de fator de potência.
- Aula prática para consolidar os conceitos de: Corrente e tensão alternada, associação de indutores e capacitores, medidas elétricas em corrente alternada, circuitos trifásicos.

BIBILIOGRAFIA BÁSICA:

WOLSKI, Belmiro. Eletricidade Básica. Ed. Base Didáticos, 2007.

GUSSOW, Milton. Eletricidade Básica. São Paulo: MAKRON Books do Brasil Editora, 2008.

BIBLIOGRAFIA COMPLEMENTAR:

CAPUANO, Francisco. **Laboratório de Eletricidade e Eletrônica**. Editora Érica, São Paulo, 2009.

PROJETOS ELÉTRICOS RESIDENCIAIS

OBJETIVOS:

Utilizar-se do conhecimento normativo técnico e realizar leitura de catálogos, manuais e projetos técnicos para, através de ferramentas e materiais adequados, analisar as condições de viabilidade para implementação dos projetos elétricos residenciais. Capacitação para que o estudante possa elaborar e desenvolver projetos elétricos residenciais relacionando-os com projetos hidráulicos contemplando a ética e as medidas de sustentabilidade.

- NBR 5444 Simbologia e convenções elétricas;
- Esquemas multifilar;
- Esquemas unifilar;
- Esquema funcional;
- Projeto Elétrico Predial; cálculo de Iluminação pelo método dos Lumens,
- Dimensionamento de circuitos ramais e do alimentador;
- Fornecimento de energia elétrica BT/MT;
- Dimensionamento e instalação dos condutores elétricos
- Aterramento em instalações elétricas;
- Eletrodutos e acessórios para instalações elétricas.

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Circuitos trifásicos:
- Previsão de cargas e divisão de instalações elétricas;
- Fornecimento de energia elétrica BT/MT;
- Dimensionamento e instalação condutores elétricos;
- Eletrodutos e acessórios para instalações elétricas
- Proteção em instalações elétricas: NR-10.
- Aula prática para consolidar os conceitos de: simbologia, diagrama unifilar e multifilar, desenho em ferramentas CAD, dimensionamento de condutores e eletrodutos.

COMPETÊNCIAS:

- Desenvolver projetos de instalações elétricas residenciais e prediais;
- Elaborar projetos de instalações elétricas residenciais e prediais;
- Elaborar memoriais descritivos de projetos elétricos residenciais e prediais;
- Relacionar o projeto elétrico com demais projetos (arquitetônico, hidráulico, estrutural);
- Desenvolver atitudes éticas no cotidiano do processo ensino-aprendizagem.
- Executar manutenção nas instalações elétricas;

HABILIDADES:

- Dimensionar e especificar materiais, componentes de instalações elétricas residenciais e prediais;
- Acompanhar a execução de projetos elétricos residenciais e prediais.
- Desenvolver habilidades e atitudes da convivência em equipe;
- Demonstrar responsabilidade, iniciativa e criatividades na execução das atividades do processo ensino-aprendizagem;
- Ler e interpretar plantas elétricas e hidráulicas.

BASES TECNOLÓGICAS:

- Projeto Elétrico Predial-Dimensionamento de circuitos - Iluminação; Tomadas de uso geral TUGs; Tomadas de Uso Específico TUEs: dimensionamento de condutores: dimensionamento de eletrodutos: dimensionamento de disjuntores, cálculo de Iluminação pelo método dos Lumens, Dimensionamento do alimentador.
- Dimensionamento e instalação condutores elétricos;
- Aterramento em instalações elétricas;
- Eletrodutos e acessórios para instalações elétricas.
- Luminotécnica Carga mínima e método lumens.
- Projeto elétrico de uma residência (isolada e coletiva)

BIBLIOGRAFIA BÁSICA:

LIMA Filho, Domingos Leite. **Projetos de Instalações Elétricas Prediais**. 12 ed. São Paulo: Érica. 2011

BIBLIOGRAFIA COMPLEMENTAR:

WLADIKA, Walmir Eros. **Curso Técnico em eletrotécnica**, módulo 2, livro 9: Especificação e aplicação de materiais. Curitiba: Base Editorial, 2008

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

ELETRÔNICA ANALÓGICA

OBJETIVOS:

Utilizar-se dos conhecimentos em eletrônica e relacioná-los aos dispositivos modernos, pesquisando, quando necessário acerca de novas tecnologias e suas aplicações. Capacitar o estudante a avaliar e testar o funcionamento e o desempenho dos circuitos em laboratório.

FMFNTA

- Física dos condutores;
- Diodos;
- Circuitos Retificadores:
- Transistores;
- Simbologia e forma física;
- Relações entre correntes no transistor;
- Configurações dos transistores;
- Circuito simples do transistor.
- FET Transistor de Efeito de Campo;
- FET de junção polarização dos Transistores;
- Circuitos Básicos de Amplificadores;
- Determinação das retas de carga de CC e CA;
- Cálculo do ganho do amplificador;
- Projeto de um Amplificador;
- Amplificador de potência classe A:
- Circuitos integrados LM317 e 555;
- Amplificadores Operacionais.
- Aula prática para consolidar os conceitos de: diodos; retificador de meia onda, onda completa e onda completa em ponte; topologia de circuitos com transistores: base comum, emissor comum e coletor comum; amplificadores operacionais e suas topologias.

COMPETÊNCIAS:

- Pesquisar novas tecnologias e aplicações dos dispositivos eletrônicos.
- Projetar circuitos eletrônicos básicos;
- Executar esquemas eletrônicos.
- Montar circuitos eletrônicos e compreender o funcionamento dos mesmos;

HABILIDADES:

- Associar conhecimentos de eletrônica aos dispositivos modernos;
- Identificar símbolos de componentes eletrônicos;
- Avaliar o funcionamento e o desempenho de circuitos em laboratório;
- Utilizar corretamente instrumentos de medição e ferramentas destinados a eletrônica.
- Detectar falhas nos circuitos eletrônicos.

- Física dos condutores:
 Estrutura atômica:
- Cristais semicondutores e sua classificação;
- Classificação dos átomos quanto ao número de elétrons;
- Dopagem do semicondutor;
- Semicondutor tipo P e tipo N;
 Portadores de Carga. Diodo:
 Junção PN;
- Polarização do diodo direta e indireta;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

Gerência de Ensino Médio		
	 Relacionar e explicar o funcionamento dos principais 	 Símbolos do diodo e sua forma física;
	componentes eletrônicos;	 Curva característica do diodo;
		 Determinação da reta de carga do diodo;
		Diodo ideal;
		Retificadores: Retificadores
		de meia onda, retificadores de conda completa,
		retificadores utilizando
		diodos em ponte; • Determinação das formas de
		onda nos diodos nos retificadores;
		 Determinação da forma de
		onda da tensão na carga em
		circuito retificador; Tensão média e corrente
		média em resistores num
		circuito retificador; • Filtros;
		● Dimensionamento de uma
		fonte CC.
		 Transistores: Polarização do transistor; Simbologia e
		forma física;
		 Relações entre correntes no transistor;
		 Configurações dos transistores;
		 Curvas características do transistor;
		●Ponto de operação do
		transistor;
		Circuito simples do transistor;
		• FET – Transistor de Efeito de Campo;
		FET de junção – polarização;
		- Moofet

Mosfet;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

	 Polarização do Mosfet;
	 ◆ Circuitos Básicos de
	Amplificadores: Estrutura do
	circuito amplificador;
	 Determinação das retas de
	carga de CC e CA;
	 Cálculo do ganho do amplificador;
	◆ Projeto de um Amplificador; -
	Amplificador de potência
	classe A;
	Amplificador Operacional:
	circuito somador, subtrator, difenciador e integrador.
BIBLIOGRAFIA BÁSICA:	

BIBLIOGRAFIA BASICA:

Cipinelli M., Sandrini W., "Teoria e desenvolvimento de projetos de circuitos eletrônicos", Editora Érica, São Paulo, 1932.

Capuano M., "Laboratório de eletricidade e eletrônica", Editora Érica, São Paulo, 2001.

Malvino A. P., "Eletrônica", Editora McGraw-Hill, São Paulo, 2019.

Malvino A. P., "Eletrônica no laboratório", McGraw-Hill, São Paulo, 1986.

BIBLIOGRAFIA COMPLEMENTAR:

Cuttler P., "Circuitos eletrônicos lineares", Editora McGraw-Hill, São Paulo, 1977. Millmann H., "Eletrônica Vol.1 e 2", Editora McGraw-Hill, São Paulo, 1986.

ACIONAMENTOS ELÉTRICOS

OBJETIVOS:

Entender as formas de acionamentos elétricos das mais simples até a mais sofisticadas.

EMENTA

• Diagramas unifilar,

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Multifilar, funcional.
- Comando de motores monofásicos e trifásicos;
- Leitura de diagramas de comando;
- Normas técnicas;
- Diagramas de tempo;
- Montagem de circuitos de comando de motores monofásicos e trifásicos;
- Acionamento de motores usando chaves de partida eletrônica.
- Introdução e aplicação da eletrônica de potência, aplicação de tiristores (soft-starter), controle de potência por PWM (inversores de frequência), conversores estáticos.

COMPETÊNCIAS:

Apresentar fundamentos de montagem e manutenção de comandos elétricos de máquinas e equipamentos, de acordo com normas técnicas, ambientais, de qualidade e de segurança e saúde no trabalho.

- Projetar simulador de comando automático para máquina operatriz utilizando soft-start.
- Identificar e avaliar os circuitos de disparo de tiristores;
- Conhecer e analisar as formas de controle de fases.
- Análise de conversores estáticos.
- Parametrizar inversores de frequência.
- Realizar manutenção corretiva em circuitos de comandos elétricos;
- Implementar e testar comando elétrico para automação sequencial de 4 motores de indução;

HABILIDADES:

- Verificar o funcionamento de chaves de partida manuais;
- Verificar o funcionamento de sistema de partida direta, com motor trifásico;
- Identificar os componentes de eletrônica de potência;
- Verificar o funcionamento de sistemas de partida de motor trifásico com reversão (utilizando botoeiras e chaves fim de curso):
- Verificar o funcionamento de sistema de partida estrela-triângulo, com motor trifásico;
- Verificar o funcionamento de sistema de partida de motor Dahlander com reversão;
- Verificar o funcionamento de sistema de partida de motor com rotor bobinado, controlado por relé temporizador;

- Simbologia, Normas,
 Dispositivos de proteção e comando; Motores monofásicos e trifásicos de indução; Proteção dos dispositivos de comandos elétricos;
- Diagramas unifilar, multifilar, funcional;
- Comando de motores monofásicos e trifásicos;
- Leitura de diagramas de comando;
- Normas técnicas;
- Diagramas de tempo;
 Montagem de circuitos de comando de motores monofásicos e trifásicos:
- Laboratório. Acionamento de motores usando chaves de partida eletrônica (softstarter, inversor de frequência e servoacionador);
- Tiristores;
- Circuitos de disparos;
- Conversores CA / CC;
- Conversores CC / CC;
- Proteção de circuitos transistorizados;
- Conversores CC/CA E fonte chaveada:
- Controle de máquinas CC e CA;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Testar o funcionamento de componentes usados em comandos elétricos;
- Verificar o funcionamento de inversor de frequência;
- Conhecer os dispositivos semicondutores, de eletrônica de potência;
- Conhecer os controles de motores CC e CA;
- Especificar, dimensionar e relacionar os componentes de eletrônica de potência.

- Aplicações com conversores de frequência;
- Parametrização dos inversores de frequência;
- Aplicações com soft starter;
- Parametrização de soft starter;

BIBLIOGRAFIA BÁSICA:

FRANCHI, Claiton Moro. Acionamentos Elétricos. Ed Érica: São Paulo, 2008.

FRANCHI, Claiton Moro. **Inversores de Frequência: Teoria e Aplicações**. Ed Érica: São Paulo, 2009.

Manual dos controladores Sistema CP3000 - 2 A e 2AE.

BARROS, Benjamin Ferreira de. **Sistema Elétrico de Potência – Guia Prático**. Ed. Érica: São Paulo, 2010.

BIBLIOGRAFIA COMPLEMENTAR:

ALBUQUERQUE, Romulo Oliveira. **Análise De Circuitos Em Corrente Alternada.** Ed. Érica: São Paulo, 2004.

3ª Série

ELETRÔNICA DE POTÊNCIA

OBJETIVOS:

Identificar os componentes e materiais utilizados em comando e proteção de motores elétricos trifásicos, bem como esboçar esquemas de circuitos elétricos trifásicos, dimensionar e especificar dispositivos elétricos para comando e proteção de motores elétricos trifásicos e executar ligações dos dispositivos elétricos de comando e proteção de motores elétricos trifásicos. Aplicar normas técnicas, padrões e legislação pertinente.

- Introdução e aplicação da eletrônica de potência;
- Semicondutores de potência;
- Conversores estáticos;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Retificadores controlados e não controlados;
- Conversores CC/CC, conversores CA/CA;
- Inversores de frequência;
- Modulador PWM;
- Fontes chaveadas;
- Princípio de funcionamento e operação de dimmers;
- Soft-starters:
- Inversores.

COMPETÊNCIAS:

- Identificar os componentes de eletrônica de potência;
- Identificar e avaliar os circuitos de disparo de tiristores;
- Conhecer e analisar as formas de controle de fases.
- Análise de conversores estáticos.
- Parametrização de inversores de frequência.
- Especificar, dimensionar e relacionar os componentes de eletrônica de potência.

HABILIDADES:

- Conhecer os dispositivos semicondutores, de eletrônica de potência:
- Conhecer os controles de motores CC e CA;

BASES TECNOLÓGICAS:

- Tiristores
- Circuitos de disparos
- Conversores CA / CC
- Conversores CC / CC
- Proteção de circuitos transistorizados.
- Conversores CC/CA E fonte chaveada
- Controle de máquinas CC e CA.
- Aplicações com conversores de frequência.
- Parametrização dos inversores de frequência.
- Aplicações com soft starter
- Parametrização de soft starter.

BIBLIOGRAFIA BÁSICA:

FRANCHI, Claiton Moro. **Inversores de Frequência: Teoria e Aplicação**. 2ª ed. São Paulo: Érica, 2009

BIBLIOGRAFIA COMPLEMENTAR:

CAPUANO, Francisco Gabriel. MARINO, Maria Aparecida Mendes. Laboratório de Eletricidade e Eletrônica. 24. ed. São Paulo: Érica: 2007

MÁQUINAS ELÉTRICAS

OBJETIVOS:

Interpretação das características construtivas e de funcionamento dos geradores de corrente contínua, motores de corrente contínua, e máquinas corrente alternada com vistas à sua operação, manutenção e aplicações.

- Noções de magnetismo;
- Noções de eletromagnetismo;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Três princípios do eletromagnetismo.
- Classificação das máquinas elétricas;
- Geradores e Motores em Corrente Contínua:
- Geradores e Motores de Corrente Alternada.
- Transformadores: Princípio de funcionamento:
- Transformadores monofásicos, Transformadores trifásicos.;
- Motores Síncronos; Motores Assíncronos;
- Motores monofásicos:
- Motores trifásicos.
- Laboratório prático: Ensaio de máquinas elétricas estáticas e rotativas.
- Modelo matemáticos de máquinas elétricas.
- Aula prática para consolidar os conceitos de: estrutura de motores elétricos de indução e monofásicos; estrutura de transformadores mono e trifásicos; verificar o funcionamento do campo girante dentro de um motor.

COMPETÊNCIAS:

- Executar a instalação e manutenção de transformadores, utilizando equipamentos adequados para suas aplicações;
- Obter através de testes experimentais os parâmetros dos modelos das máquinas de corrente contínua, síncrona e de indução;
- Avaliar experimentalmente o comportamento do motor de indução quando acionado por um inversor.
- Executar a instalação e manutenção de motores síncronos e assíncronos utilizando equipamentos adequados para suas aplicações.

HABILIDADES:

- Compreender o princípio de funcionamento, a modelagem, os aspectos construtivos e as formas de operação da máquina de corrente contínua excitação separada operando como motor e como gerador;
- Compreender como os conceitos de eletromagnetismo são empregados para gerar forças em sistemas mecânicos de movimento linear e rotativo;
- Compreender e classificar as máquinas de corrente contínua pelo modo de excitação (separada, série, derivação e composta);
- Compreender como podem ser gerados conjugado em máquinas de corrente alternada.

BASES TECNOLÓGICAS:

- Noções de magnetismo;
- Noções de eletromagnetismo; Lei de Lenz e Lei de Faraday;
- Três princípios do eletromagnetismo;
- Classificação das máquinas elétricas CC;
- Transformadores:

Princípio de funcionamento;

• Transformadores monofásicos,

Transformadores trifásicos;

- Aplicações de transformadores:
- Geradores de CC: Princípio de funcionamento;
- Tipos de geradores de CC:
- Aplicações de geradores de CC;
- Motores de CC: Princípio de funcionamento;
- Tipos de motores de CC:
- Aplicações de motores de CC:
- Geradores de CA:
 Princípio de funcionamento;
- Tipos de geradores de CA;
 Aplicações de geradores de
- CA.

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

 Levantamer 	nto	de
Inspeção,	execuç	ão,
planejamento,	programaçã	о е
controle das	manutenç	ões
preventiva,	corretiva	е
preditiva - PDC	A;	
	Inspeção, planejamento, controle das preventiva,	planejamento, programaçã controle das manutenço

- PDCA: Ferramentas da qualidade, círculo de controle de qualidade;
- Motores Síncronos:
 Princípio de funcionamento;
 Tipos de motores síncronos;
 Aplicações de motores síncronos;
- Motores Assíncronos:
 Motores trifásicos; Princípio de funcionamento; Tipos de motores trifásicos; Tipos de acionamentos de motores trifásicos;
- Métodos de controle de velocidade de motores trifásicos;
- Aplicações de motores
 Trifásicos;
- Motores monofásicos:
 Princípio de funcionamento dos motores monofásicos;
 Tipos de Motores monofásicos;
 Aplicações de motores monofásicos.

BIBLIOGRAFIA BÁSICA:

CORAIOLA, José Alberto. MACIEL, Ednilson Soares. Curso Técnico em eletrotécnica, módulo 3, livro 15: **Transformadores e máquinas elétricas girantes**. Curitiba: Base didáticos. 2009

BIBLIOGRAFIA COMPLEMENTAR:

FRANCHI, Claiton Moro. **Inversores de Frequência: Teoria e Aplicação**. 2ª ed. São Paulo: Érica, 2009.

MARTIGNONI, Alfonso. **Máquinas de corrente Alternada**. 6ª ed. São Paulo: Globo, 1995

MARTIGNONI, Alfonso. **Máquinas Síncronas**. Edart: São Paulo, 1967

AUTOMAÇÃO E CONTROLE DE PROCESSOS

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

OBJETIVOS:

Utilizar software; instalar sistemas baseados no PLC; programar circuitos; Identificar PLC na rede.

EMENTA

- Sistema Numeração;
- Conversão de Sistemas de Numeração;
- Álgebra Booleana; Portas Lógicas;
- Mapa de Karnaugh;
- Circuitos Digitais Circuitos combinacionais;
- Filp-Flops RS, JK, D, T;
- Máguinas de estado;
- Circuitos sequenciais;
- Circuitos integrados.
- Medição de Pressão;
- Medição de Nível;
- Elementos Finais de Controle;
- Transmissores e Conversores;
- Programação Ladder.
- Padrões de comunicações industriais de dispositivos de controle.
- Sensores:
- Malhas de controle abertas:
- Malhas de controle fechadas;
- Controle ON/OFF
- Controle Proporcional.
- Controle PID;

COMPETÊNCIAS:

- Ser capaz de especificar, instalar e configurar instrumentos de medição e controle de processos;
- Elaborar projetos eletroeletrônicos integrando os instrumentos de medição, os controladores e atuadores.
- Identificar falhas em instrumentos de medição.
- Ajustar e sintonizar malhas de controle.
- Elaborar programas para controle de processos em controladores industriais:
- Elaborar e sintonizar em plantas modelo, as principais

HABILIDADES:

- Conhecer fundamentos de medição industrial, assim como as principais técnicas e instrumentos industriais para medição de Pressão, Vazão, Nível, Temperatura, Densidade e pH e os fundamentos de Controle e Sintonia de processos.
- Conhecer os principais conceitos de instrumentação e controle e simbologia.
- Descrever o funcionamento e calibrar instrumentos de medição industrial;
- Interpretar o funcionamento e calibrar

- Sistema Numeração:
 Decimal; Binária;
 Hexadecimal: Octal:
- Circuitos Digitais básicos;
- Álgebra Booleana;
- Código Gray;
- Mapa de Karnaugh;
- Estruturas dos circuitos digitais;
- Tipos dos circuitos digitais;(Aulas de laboratório);
- Filp-Flops RS, JK, D, T; Máquinas de estado (Aulas de laboratório).
- Outros circuitos integrados:
 Codificador;
 Decodificador;
 Multiplexador;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

	Gerendia de Erisino Medio	
estratégias de controle industrial.	malhas de controle de processos industriais; Conhecer o princípio de funcionamento e calibrar Válvulas de controle e posicionadores;	Demultiplexador; Somador (Aulas de laboratório). • Medição de Pressão; • Conceitos Físicos Aplicados à Medição de Pressão: Unidades e suas relações; • Tipos de Pressão Medida; • Elementos de Medição de Pressão (Tipos de Sensores); • Transmissores de Pressão; Instrumentos Padrão para medição de Pressão; • Instrumentos para Alarme e Inter travamento de Pressão; • Malhas Típicas de Pressão; • Medição de Nível; • Tipos de Sensores e Transmissores de Nível; • Medição de Nível de Sólidos Granulados; • Instrumentos para Alarme e Inter travamento de Nível; • Malhas Típicas de Nível. • Elementos Finais de Controle: Definições, Terminologias Básicas e Classificação de Válvulas de controle; • Tipos de Acionamentos de Válvulas; • Tipos e Características dos Medidores de Vazão; • Instrumentos para Alarme e Inter travamento; • Tipos e Características dos Medidores de Vazão; • Instrumentos para Alarme e Inter travamento; • Tipos e Características dos Sensores de Temperatura; • Transmissores e Conversores; • Padrões de medição contínua; • Analisadores Industriais, • Controladores Digitais; • SDCD e Planta Piloto, • Práticas de Sintonia de Malhas de Controle.

• Malhas de controle abertas;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

Malhas	de	controle
fechadas	ı	
Control	e ON/OFF	=
Control	e Proporc	ional.
Control	e PID;	

BIBLIOGRAFIA BÁSICA

THOMAZINI, Daniel. ALBUQUERQUE, Pedro Urbano Braga de. **Sensores Industriais: fundamentos e aplicações.** 8ª ed. São Paulo: Érica, 2011

BIBLIOGRAFIA COMPLEMENTAR

SILVEIRA, Paulo Rogério da. SANTOS, Winderson E. dos. **Automação e Controle discreto**. 9ª ed. São Paulo: Érica, 1998

GEORGINI, Marcelo. Automação Aplicada: Descrição e implementação de Sistemas Sequencias com PLCs. 9ªed. São Paulo: Érica, 2007

PLANEJAMENTO E CONTROLE DA MANUTENÇÃO

OBJETIVOS:

Planejar e controlar as atividades de manutenção, organização e métodos de execução voltada aos sistemas elétricos de potência.

- Conceituação da gestão estratégica da manutenção;
- Métodos de execução da manutenção;
- Caracterização do sistema da qualidade aplicado à manutenção;
- Conhecimento sobre elaboração da rede PERT/CPM,
- Cadastramento de ativos.
- Identificação dos Indicadores de desempenho;
- Conhecimento sobre sistemas informatizados de manutenção.
- Manutenção e características de óleo refrigerante de transformadores.
- Ensaios de isolamento de enrolamentos de máquinas elétricas.
- Tipos de isoladores e isolantes aplicados ao SEP
- Técnicas de desmontagem e substituição de equipamentos do SEP: substituição de postes, substituição de estruturas, substituição de isoladores, substituição de transformadores, substituição de seccionadores, emenda/conexão/troca de condutores.
 - Técnicas de análise de falhas do SEP: identificação de sobrecargas em circuitos de distribuição, identificação de sobreaquecimento em componentes e circuitos de distribuição, verificação de centelhamento e identificação de falha de isolação (fuga de corrente) no SEP, resistência de isolamento, falhas elétricas (curto-circuito franco/por impedância), condições e valores nominais de trabalho (sub/sobre/desequilíbrio/tensão-corrente),
- Procedimentos de abertura e fechamento de circuitos.

HABII IDADES:	BASES TECNOLÓGICAS:
	271020 120110200107101
	HABILIDADES:

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Montar e desmontar isoladores elétricos;
- Detectar falhas de isolamento em máquinas elétricas
- Planejar a manutenção de equipamentos conectados ao SEP de acordo com a necessidade
- Verificar a necessidade de substituição de itens de máquinas elétricas

- Executar ensaios de isolamento em máquinas elétricas
- Identificar componentes que compõem máquinas elétricas que se conectam ao SEP
- Executar a manutenção de máquinas elétricas conectadas ao SEP
- Identificar componentes elétricos funcionando fora das suas condições e valores nominais.

- Manutenção Corretiva,
 Manutenção Preventiva,
 Manutenção Preditiva
- Circuitos trifásicos; Cargas ligadas em triângulo e estrela; Tensão de linha e tensão de fase; Potência Trifásica; Fator de Potência: Rendimento;
- Projetos Elétricos Industriais.
- Característica dielétrica de materiais
- Fornecimento de energia elétrica BT/MT.
- Dimensionamento e instalação condutores elétricos;
- Aterramento em instalações elétricas;
- Terminologias;
- Proteção contra sobrecargas;
- Disjuntores, fusíveis

BIBLIOGRAFIA BÁSICA

TELES, Jhonata. Bíblia do RCM - O Guia Completo e Definitivo da Manutenção Centrada na Confiabilidade da Era da Indústria 4.0. Brasília: Engeteles Editora, 2019.

BIBLIOGRAFIA COMPLEMENTAR

Vários Autores. **Sistema Elétrico de Potência - SEP:** guia prático de conceitos, análises e aplicações de segurança da NR-10. 1 ed. São Paulo: Érica, 2012.

PROJETOS ELÉTRICOS INDUSTRIAIS

OBJETIVOS:

Conhecer e avaliar as características de materiais e componentes utilizados nas instalações elétricas, ler e interpretar normas, catálogos, manuais de tarefas para projetos elétricos. Conhecer técnicas de projeto e normas de segurança do trabalho afim de projetar instalações elétricas industriais analisando condições técnicas e econômicas da obra.

- Circuitos trifásicos:
- Cargas ligadas em triângulo e estrela;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Tensão de linha e tensão de fase;
- Potência Trifásica:
- Fator de Potência;
- Rendimento;
- Projetos Elétricos Industriais;
- Sistema de Proteção contra Descargas Elétricas SPDA;
- Previsão de cargas em instalações elétricas;
- Fornecimento de energia elétrica BT/MT;
- Dimensionamento e instalações de condutores elétricas industriais;
- Aterramento em instalações elétricas;
- Eletrodutos e acessórios para instalação industrial;
- Luminotécnica (Cavidades Zonais) Projeto de um galpão industrial;
- Previsão de cargas e divisão de instalações elétricas;
- Fornecimento de energia elétrica BT/MT;
- Dimensionamento e instalação condutores elétricos;
- Aterramento em instalações elétricas;
- Eletrodutos e acessórios para instalações elétricas;
- Termologias;
- Proteção contra sobrecargas: Disjuntores, fusíveis (dimensionamento/seleção);
- Lista de materiais;
- Leitura, análise e interpretação de projetos elétricos industriais.

COMPETÊNCIAS:

- Desenvolver projetos de instalações elétricas residenciais, prediais e industriais:
- Elaborar projetos de instalações elétricas residenciais, prediais e industriais;
- Elaborar memoriais descritivos de projetos elétricos residenciais e prediais;
- Analisar projetos elétricos residenciais e prediais;
- Relacionar o projeto elétrico com demais projetos (arquitetônico, hidráulico, estrutural);
- Agir de acordo com a ética profissional;
- Executar manutenção nas instalações elétricas;

HABILIDADES:

- Dimensionar e especificar materiais, componentes de instalações elétricas residenciais, prediais e industriais;
- Saber ler e interpretar projetos técnicos industriais;
- Acompanhar a execução de projetos elétricos residenciais e prediais.
- Desenvolver habilidades e atitudes da convivência em equipe;
- Demonstrar responsabilidade, iniciativa e criatividades na execução das atividades profissionais.

- Circuitos trifásicos; Cargas ligadas em triângulo e estrela; Tensão de linha e tensão de fase; Potência Trifásica; Fator de Potência; Rendimento;
- Projetos Elétricos Industriais. SPDA.
- Previsão de cargas em instalações elétricas.
- Fornecimento de energia elétrica BT/MT.
- Dimensionamento e instalações de condutores elétricas industriais.
- Aterramento em instalações elétricas.
- Eletrodutos e acessórios para instalação industrial.
- Luminotécnica (Cavidades Zonais)
- Projeto de um galpão industrial;

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

I	
	 Previsão de cargas e
	divisão de instalações
	elétricas;
	Fornecimento de energia
	elétrica BT/MT;
	 Dimensionamento e
	instalação condutores
	elétricos;
	Aterramento em
	instalações elétricas;
	Eletrodutos e acessórios
	para instalações elétricas.
	Proteção em instalações
	elétricas industriais:
	Termologias;
	 Proteção contra
	sobrecargas;
	Disjuntores, fusíveis
	(dimensionamento/seleção);
	Lista de materiais;
	 Leitura, análise e
	interpretação de projetos
	elétricos industriais.

BIBLIOGRAFIA BÁSICA:

WALENIA, Paulo Sérgio. Curso Técnico em eletrotécnica, módulo 2, livro 11: **Projetos Elétricos Industriais.** Curitiba: Base didáticos. 2008

BIBLIOGRAFIA COMPLEMENTAR:

WLADIKA, Walmir Eros. Curso Técnico em eletrotécnica, módulo 2, livro 9: **Especificação e aplicação de materiais.** Curitiba: Base Editorial, 2008

SISTEMAS ELÉTRICOS DE POTÊNCIA

OBJETIVOS:

Discutir conhecimentos indispensáveis sobre as várias fontes de energia, as tecnologias, máquinas e equipamentos que permitem realizar sua transformação em formas de energia elétrica, identificando potencialidades e otimizando os sistemas de distribuição. Objetiva-se ainda capacitar o estudante a analisar e solucionar problemas oriundos dos sistemas de distribuição de energia elétrica.

Espera-se que o estudante possa adquirir conhecimento necessário para solucionar problemas reais.

	EMENTA	
Geração:		

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

- Panorama das principais fontes de energia elétrica;
- Sistemas centralizados e descentralizados de energia elétrica;
- Geração hidroelétrica;
- Geração termelétrica;
- Geração nuclear;
- Centrais geradoras;
- Sistemas não convencionais de produção;
- Energia solar painéis fotovoltaicos;
- Energia eólica aerogeradores;
- Perspectivas de geração de eletricidade e tendências futuras;
- Demanda de energia elétrica;
- Curvas típicas;
- Expansão de geração e transmissão padronização;
- Transmissão CA e transmissão CC: aspectos comparativos;
- Parâmetros elétricos de linhas de transmissão;
- Relações entre tensões e correntes;
- Relações de potência nas linhas de transmissão;
- Operação das linhas de transmissão;
- Distribuição: definições básicas, relação entre a carga e fatores de perdas, demanda diversificada máxima, crescimento de carga, comportamento, modelamento e medição da curva de carga.

COMPETÊNCIAS:

- Elaborar croquis e esquemas de linhas de transmissão, redes de distribuição e subestações elétricas acima de 15 kV.
- Conhecer a estrutura do sistema elétrico brasileiro.
- Conhecer aspectos construtivos, princípios de funcionamento e operação de centrais de geração de energia elétrica.

HABILIDADES:

- Identificar, dimensionar e especificar materiais e equipamentos elétricos.
- Aplicar padrões, normas técnicas e legislação pertinente.

BASES TECNOLÓGICAS:

- Função do Sistema elétrico de potência;
- Estrutura e histórico do sistema elétrico de potência brasileiro;
- Geração de energia elétrica;
- Transmissão de energia elétrica;
- Distribuição de energia elétrica;
- Qualidade de energia;
- Balanço Energético Nacional;
- Geração de Energia Elétrica:
- Energia hídrica;
- Energia térmica;
- Energia nuclear;
- Energia eólica;
- Energia solar ou fotovoltaica;

23

GOVERNO DO ESTADO DO ESPÍRITO SANTO
Secretaria de Estado da Educação
Subsecretaria de Estado de Educação Básica e Profissional

 Gerência de Ensino Médio	John
	Energia maremotriz;Biomassa;Gás natural;
	Energia geotérmica;Célula combustível;
	 Linhas de Transmissão; Tensões de transmissão; De draginação Materiaio
	Padronização Materiais utilizados;Cabos condutores;
	Isoladores e ferramentas;Ferragens e acessórios;
	 Estruturas das linhas de transmissão; Diaposição
	Disposição dos condutores;Dimensões das estruturas;
	 Classificação das estruturas;
	Cabos para-raios;Escolha do traçado;Parâmetros elétricos;
	 Características de Transmissão de Energia em Corrente alternada e
	Corrente contínua;Circuitos Típicos;Transmissão CCXCA;
	 Operação em regime permanente; Condutância do Dianaraão;
	 Condutância de Dispersão; Perdas nos isoladores; Efeito Corona;
	 Formação dos eflúvios de corona;
	 Previsão do desempenho das linhas quanto à formação de corona;
	 Gradiente de potencial na superfície dos condutores; Análise quantitativa das
	manifestações do efeito corona;
	Radio interferência;Ruídos acústicos;Perdas de energia por
	Perdas de energia por corona;Redes de Distribuição

Secretaria de Estado da Educação Subsecretaria de Estado de Educação Básica e Profissional Gerência de Ensino Médio

	Estudo das cargas elétricas
	Classificação das cargas Curvos da cargas
	Curvas de carga (Diagrama de Cargas)
	 Modelos de cargas elétricas
	 Composição de cargas Materiais utilizados
	 Dimensionamento de uma rede de distribuição;
DIDLIGODATIA DÁCICA	Iluminação pública Escolha do traçado

BIBLIOGRAFIA BÁSICA

SÓRIA, Ayres Francisco da Silva. FILIPINI, Fábio Antônio. Curso Técnico em eletrotécnica, módulo 3, livro 14: **Eficiência Energética.** Curitiba: Base Editorial, 2009

BIBLIOGRAFIA COMPLEMENTAR

Vários Autores. Sistema Elétrico de Potência - SEP: guia prático de conceitos, análises e aplicações de segurança da NR-10. 1 ed. São Paulo: Érica, 2012