GRANDEZAS DIRETA E INVERSAMENTE PROPORCIONAIS

Esse é um tema básico e importante. Tem sido solicitado em concursos diversos, em vestibulares e também no ENEM. Em geral o aluno sabe resolver problemas envolvendo duas grandezas proporcionais pelo emprego da "regra de três". Mas aplica a regra de três em situações inadequadas, para as quais ela não é válida. Em geral, o aluno não avalia corretamente se as grandezas envolvidas são ou não proporcionais, muito menos se essa proporcionalidade é direta ou inversa. Mais complicado ainda para o aluno é a situação onde uma grandeza é proporcional a várias grandezas ao mesmo tempo.

O objetivo dessa oficina é revistar esses temas e habilitar os alunos a utilizar essas ferramentas na resolução de problemas.

1. Grandezas Proporcionais

Considere a seguinte situação: uma empresa de engenharia consegue asfaltar 60 km de estrada em 20 dias. Deseja-se saber quantos dias seriam necessários para que essa mesma empresa asfalte uma estrada de 84km. As duas grandezas envolvidas, quilômetros de estrada a ser asfalto e o número de dias necessários para realizar o asfaltamento são tais que: se uma delas aumenta, a outra também aumenta, ou seja, quando aumentamos o número de quilômetros a ser asfaltado, o tempo necessário para realizar esse asfaltamento também aumenta.

Note, em particular, que se duplicássemos o número de quilômetros, o tempo gasto para realizar o asfaltamento seria também duplicado. Se triplicássemos o número de quilômetros, o tempo para realizar o asfaltamento deveria também ser triplicado. Na tabela abaixo registramos a situação para algumas quilometragens. Note que na última coluna dessa tabela encontra-se registrado o quociente dos valores das duas grandezas em cada caso.

Quilometragem q da estrada	Nº d de dias necessários para realizar o asfaltamento	Quociente q/d
60	20	3
120	40	3
180	60	3
30	10	3
12	4	3
1	1/3	3

Nessa situação, as grandezas q e d são tais que o valor de uma aumenta quando a outra também aumenta e, além disso, o quociente entre elas é constante.

Quando duas grandezas apresentam características como as exemplificada acima, diremos que as duas grandezas são *proporcionais* (ou diretamente proporcionais). Tecnicamente duas grandezas x e y são proporcionais quando existe uma constante k (fator de proporcionalidade) tal que $y = k \times x$ ou, equivalentemente, $\frac{y}{x} = k$.

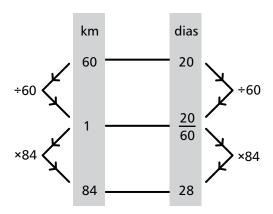
Problema 1: Uma empresa de engenharia consegue asfaltar 60 km de estrada em 20 dias. Quantos dias seriam necessários para a mesma empresa asfaltar uma estrada de 84 km?

Solução: Há dois métodos que são geralmente empregados para resolver esse tipo de problema.

1º método (método de redução à unidade):

Inicialmente se calcula quantos dias serão necessários para asfaltar uma estrada de 1 km. Como 60 km requerem 20 dias, 1km irá requerer 20/60 dias. Então 84 km irão requerer $84 \times 20/60 = 28$ dias.

Através de um esquema poder-se-ia proceder da seguinte maneira:



2º método (proporção):

Seja x o número de dias que se deseja descobrir. Então 60km estão para 84km, assim como 20 dias estão para x dias. Ou seja:

$$\frac{60}{84} = \frac{20}{x}$$

Logo
$$x = \frac{84 \times 20}{60} = 28$$
.

Note que, na resolução desse problema, as duas grandezas envolvidas são diretamente proporcionais, pois o número de dias necessários para asfaltar uma estrada é proporcional ao comprimento da estrada. Cada 1 km asfaltado demanda 20/60 = 1/3 de um dia. O valor 1/3 é a constante de proporcionalidade entre essas duas grandezas.

Pode ser útil montar o seguinte esquema no 2º método de resolução:



As setas têm o seguinte significado: a medida que se aumenta o número de quilômetros de estrada a ser asfaltado (passa de 60 km para 84 km), o número de dias necessários para executar esse asfaltamento também tem que aumentar (passa de 20 dias para x dias). Por isso as duas setas estão indicando a mesma direção. Portanto, sem resolver o problema, já se sabe que o valor a ser obtido para x deverá ser maior que 20.

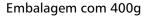
Procure apresentar ao aluno, sempre que possível, as diversas possibilidades de tratamento para um mesmo problema. É importante que ele seja exposto a diferentes métodos de solução. Faça uma discussão sobre as vantagens e desvantagens de cada um dos métodos empregados na resolução do exemplo em tela.

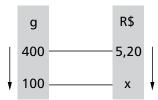
O problema a seguir ilustra uma situação muito comum, encontrada nos supermercados: um produto, de uma determinada marca, oferecido em embalagens diferentes, com preços diferentes. É importante, nesses casos, que o consumidor saiba decidir qual das opções é economicamente a mais vantajosa.

Problema 2: Uma lata de leite em pó, pesando 400 g, custa R\$ 5,20. O mesmo leite, na embalagem de 900 g, custa R\$ 11,20. Qual das duas opções é economicamente a mais vantajosa?

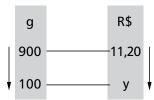
Solução: Há dois métodos que são geralmente empregados para resolver esse tipo de problema.

1º método: Nesse tipo de problema, para se comparar qual a embalagem economicamente mais vantajosa, o ideal é descobrir por quanto está saindo o preço de uma mesma quantidade do produto em cada uma das duas embalagens para, em seguida, comparar os preços dessa mesma quantidade. Obviamente, deve-se escolher uma quantidade para comparação que facilite as contas. No exemplo em tela, 100g parece ser uma boa escolha pois 100g é 1/4 de 400g e 1/9 de 900g. Designando por x o preço de 100g de sabão em pó na embalagem de 400g e por y o preço de 100g de sabão em pó na embalagem de 900g, tem-se:





Embalagem com 900g



Inicialmente, perceba que as grandezas envolvidas são diretamente proporcionais. Dos esquemas acima, seguem as proporções:

$$\frac{400}{100} = \frac{5,20}{x} \Leftrightarrow 4x = 5,20 \Leftrightarrow x = \frac{5,20}{4} \Leftrightarrow x = 1,30$$

$$\frac{900}{100} = \frac{11,20}{y} \Leftrightarrow 9y = 11,20 \Leftrightarrow y = \frac{11,20}{9} \Leftrightarrow y \cong 1,24$$

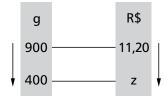
Comparando então o preço de 100 g de sabão em pó em cada uma das embalagens, percebe-se que a embalagem com 900 g do produto é economicamente mais vantajosa, já que y < x.

Chamamos a atenção para o fato de que não é necessário montar o esquema e as proporções para se resolver este tipo de problema. O procedimento pode ser mais direto, simplesmente raciocinando da seguinte maneira:

Na embalagem de 400 g, cada 100 g de leite em pó custam R5,20 \div 4 = R$1,30$. Já na embalagem de 900 g, cada 100 g custam R11,20 \div 9 \cong R$1,24$. Logo. a segunda embalagem é economicamente mais vantajosa.

2º método: Outra opção é comparar quanto custaria, por exemplo, 400 g de sabão em pó na embalagem de 900 g. Nesse caso, designando por z o preço de 400 g de sabão em pó na embalagem de 900 g, tem-se:

Embalagem com 900g



donde segue a proporção:

$$\frac{900}{400} = \frac{11,20}{z} \Leftrightarrow 9z = 4 \times 11,20 \Leftrightarrow z = \frac{44,80}{9} \cong 4,98.$$

Logo, 400 g de sabão em pó, na embalagem de 900 g, saem a R\$ 4,98 enquanto que, na embalagem de 400 g, saem a R\$ 5,20. Com isso, é mais vantajoso economicamente comprar esse sabão em pó na embalagem de 900 g.

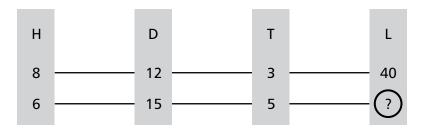
É importante explorar com o aluno as diversas formas de resolver um mesmo problema. Comente com eles as vantagens e desvantagens de cada forma de solução.

Consideraremos agora um problema no qual uma grandeza é proporcional a várias outras. Em geral, os alunos têm dificuldades em trabalhar com esse tipo de problema.

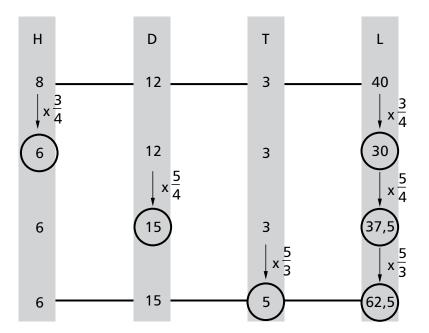
Problema 3: Trabalhando 8 horas por dia, 3 trabalhadores constroem um muro de 40 m de altura em 12 dias. Se o número de horas de trabalho diário for reduzido para 6 e o número de trabalhadores aumentado para 5, qual o comprimento de um muro de mesma altura que eles construirão em 15 dias?

Solução: Nesse problema há 4 grandezas envolvidas: horas trabalhadas por dia (H), número de trabalhadores (T), comprimento de muro (L) e número de dias (D). O que se quer conhecer é o comprimento do muro (L) quando H = 6, T = 5 e D = 15. Pelas informações do enunciado, sabe-se que L = 40 quando H = 8, T = 3 e D = 12.

Inicialmente note que a grandeza L depende das grandezas H, T e D e, além disso, L é proporcional a cada uma das três grandezas H, T e D, ou seja, mantidas as grandezas H e T constantes, a grandeza L e D são proporcionais, pois aumentando o comprimento do muro a ser construído, o nº de dias aumenta na mesma proporção, isto é, duplicando o comprimento do muro, teremos que duplicar o nº de dias para construí-lo e vice versa. A mesma análise pode ser feita entre L e H, mantidas as grandezas T e D constantes, e ainda, entre L e T, mantidas H e D constantes. Assim, a grandeza L é proporcional a cada uma das três grandezas envolvidas. Dessa forma temos:



Como a grandeza L é proporcional a cada uma das outras três grandezas, a ideia é, passo a passo, transformarmos a relação fornecida entre as quatro grandezas na nova relação desejada, executando em cada passo, uma única proporção entre L e cada uma das três grandezas, mantendo sempre as outras duas fixas.



Logo, se o número de horas de trabalho diário for reduzido para 6 e o número de trabalhadores aumentado para 5, eles construirão em 15 dias um muro de comprimento igual a 62,5 m.

Então, não é fácil? Não há segredo na resolução desse tipo de problema. Na prática trabalhamos sempre com duas grandezas de cada vez. Realizando assim várias (nesse exemplo três) regras de três simples. É esse tipo de problema que alguns autores chamam de *regra de três composta*.

Existe um procedimento mais direto para esse tipo de problema. A ideia é que se uma grandeza w é proporcional às grandezas x, y e z, então a grandeza w é proporcional ao produto delas, ou seja, proporcional a xyz, o que significa existir uma constante k tal que $w = k \times (xyz)$.

Aplicando esse fato ao exemplo anterior temos que, como a grandeza L é proporcional às grandezas H, D e T, segue que L é proporcional à HDT, o que significa existir uma constante k tal que $L = k \times HDT$. Como é sabido que L = 40 quando H = 8, T = 3 e D = 12, podemos obter o valor de k substituindo esses valore na relação $L = k \times HDT$:

$$40 = k \times 8 \times 12 \times 3 \Rightarrow k = \frac{40}{288} = \frac{5}{36}.$$

Agora, para H=6, T=5 e D=15 temos: $L=\frac{5}{36}\times 6\times 15\times 5=62,5$. Com isso, o muro terá comprimento 62,5m.

É bem mais simples, não acha? Porém fica muito artificial para os alunos. É claro que eles preferirão esse método ao primeiro por ser mais direto e rápido. Entretanto, sugiro não apresentar a eles esse processo, pois certamente eles o adotarão e, em pouco tempo, não se lembrarão mais da justificativa do mesmo e, então, estarão procedendo mecanicamente, sem ter consciência do que estão realmente fazendo.

2. Grandezas inversamente proporcionais

Considere agora um tanque a ser enchido e que se possa enchê-lo utilizando-se uma, duas ou várias torneiras, todas de mesma vazão. Dependendo do número de torneiras utilizadas, o tempo para encher o tanque varia. É importante observar que essa situação se diferencia dos anteriores pois, nesse caso, as duas grandezas envolvidas, número de torneiras e tempos para encher o tanque, são tais que, quando uma delas aumenta, a outra diminui, ou seja, quando aumentamos os número de torneiras, o tempo necessários para se encher o tanque diminui. Note, por exemplo, que se uma torneira sozinha gastasse 6 horas para encher o tanque, duas torneiras juntas levariam a metade desse tempo, ou seja, 3 horas, e ainda, três torneiras juntas levariam um terço desse tempo, ou seja, 2 horas. Na tabela abaixo registramos a situação para o número de torneiras variando de 1 a 6. Note que na última coluna dessa tabela encontra-se registrado o produto dos valores das duas grandezas em cada caso.

Nº n de torneiras	Tempo t necessário para encher o tanque (em horas)	Produto nXt
1	6	6
2	3	6
3	2	6
4	1,5	6
5	1,2	6
6	1	6

Nessa situação, as grandezas n e t são tais que o valor de uma aumenta quando a outra diminui e, além disso, o produto entre elas é constante.

Quando duas grandezas apresentam características como as exemplificadas acima, diremos que as duas grandezas são inversamente proporcionais. Tecnicamente, duas grandezas x e y são inversamente proporcionais quando existe uma constante k (fator de proporcionalidade) tal que

$$y = \frac{k}{x}$$
 ou, equivalentemente, $x \cdot y = k$.

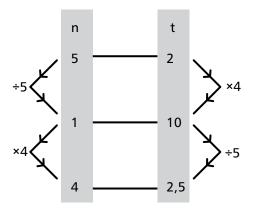
Problema 4: Se 4 torneiras (com mesma vazão) enchem um tanque em 2 horas (estando o tanque inicialmente vazio), quanto tempo demorará para encher esse tanque (estando inicialmente vazio) quando somente 3 dessas 4 torneiras estiverem abertas?

Solução: Nesse problema temos duas grandezas que são o número n de torneiras e o tempo t necessário para encher o tanque. Note que, pelo exposto acima, o tempo necessário para encher o tanque é inversamente proporcional ao número de torneiras.

Consideraremos dois métodos que sintetizam procedimentos possíveis para resolver esse problema.

1º método (método de redução à unidade):

Pode-se montar o seguinte esquema:

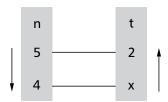


Logo, 4 torneiras levarão 2,5 horas ou, equivalentemente, 2 horas e 30 minutos para encher esse tanque (já que 0,5 horas corresponde a meia hora que, em minutos, equivale a 30 minutos).

Note que ao diminuirmos o número de torneiras, dividindo-o por 5, o tempo é multiplicado por 5, ao passo que, ao aumentarmos o número de torneiras, multiplicando-o por 4, o tempo é dividido por 4.

2º método (proporção):

Seja x o tempo necessário para que 4 torneiras encham o tanque. Pode-se montar o seguinte esquema:



As setas têm o seguinte significado: a medida que se diminui o número de torneiras (passa de 5 para 4), o tempo necessário para encher o tanque aumenta (passa de 2 horas para x horas). Por isso, as duas setas estão indicando direções contrárias. Portanto, sem resolver o problema, já se sabe que o valor a ser obtido para x deverá ser maior que 2 horas.

O importante agora é a montagem da proporção, que deve ser feita de forma inversa, ou seja,

$$\frac{5}{4} = \frac{x}{2}$$

 $\frac{5}{4} = \frac{x}{2}.$ Logo, $x = \frac{2 \times 5}{4} = 2,5$ horas, isto é, 2 horas e 30 minutos (que é um valor superior a 2 horas, conforme era esperado).

Chame a atenção dos alunos para um erro que é muito comum ser cometido na resolução de problemas que envolvem grandezas inversamente proporcionais. Em geral, os alunos montam a proporção como sendo $\frac{5}{4} = \frac{2}{x}$, e resolvem-na, achando $x = \frac{4 \times 2}{5} = 1,6$ horas ou, equivalentemente, 1 hora e 36 minutos (já que 0,6 horas são 6 décimos de 1 hora e, cada décimo de hora possui 6 minutos). Note que esse procedimento equivale a considerar que as grandezas envolvidas são diretamente proporcionais, que não é o caso. Daí a importância de se analisar previamente se as grandezas envolvidas são diretamente ou inversamente proporcionais antes de se montar a proporção. Isso faz toda a diferença na resolução do problema.

Problema 5: Um fazendeiro possui ração suficiente para alimentar suas 16 vacas durante 62 dias. Após 14 dias, ele vende 4 vacas. Passados mais 15 dias, ele compra 9 vacas. Quantos dias, no total, durou sua reserva de ração?

Solução: Inicialmente, deve-se observar que o número de dias que dura a ração é inversamente proporcional ao número de vacas a serem alimentadas: quanto mais vacas, menos dura a ração e ainda, se o número de vacas duplica, o tempo de duração da ração é reduzido à metade; se triplica, o tempo de duração da ração é reduzido a um terço e assim, sucessivamente. Com isso, passados os primeiros 14 dias, o fazendeiro ainda tinha ração para alimentar 16 vacas por 48 (= 62 - 14) dias. Nesse momento, tendo vendido 4 vacas, precisa-se saber quantos dias ainda durará o estoque de ração, agora para alimentar 12 (= 16 - 4) vacas. Sendo essas duas grandezas inversamente

proporcionais, como $12 = 16 \times \frac{12}{16}$, tem-se que $48 \div \frac{12}{16} = 48 \times \frac{16}{12} = 64$. Com isso, depois da venda

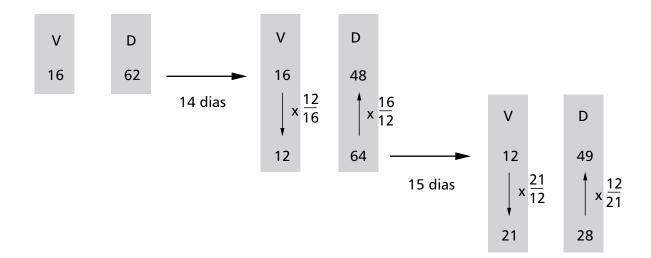
das 4 vacas, o fazendeiro tem ração suficiente para alimentar suas 12 vacas por 64 dias. Passados os próximos 15 dias, há ração para alimentar 12 vacas por 49 (= 64 - 15) dias. Nesse instante, tendo o fazendeiro comprado mais 9 vacas, precisa-se saber quantos dias ainda durará o estoque de ração,

agora para alimentar 21 (= 12 + 9) vacas. Como 21=12
$$\times \frac{21}{12}$$
, tem-se que $49 \div \frac{21}{12} = 49 \times \frac{12}{21} = 28$.

Com isso, depois da compra das 9 vacas, o fazendeiro tem ração suficiente para alimentar suas 21 vacas por mais 28 dias.

Com isso, a ração terá durado 14 + 15 + 28 = 57 dias.

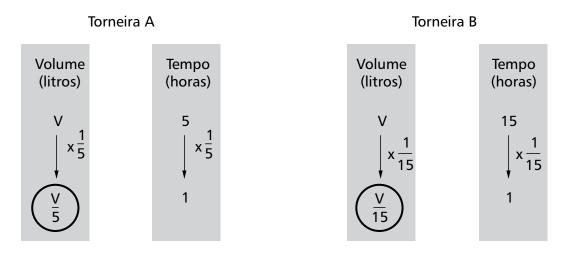
Veja em seguida um esquema que pode ser montado e que sintetiza todo o raciocínio aqui desenvolvido.



Faremos agora o exemplo clássico das torneiras que enchem um tanque. Vale comentar que, em geral, chega-se a aplicar fórmula para a resolução desse problema. De fato, é possível deduzir uma fórmula que se aplica no caso geral. Entretanto, entendemos que a fórmula é dispensável, pois a aluno tende a decorá-la (e depois certamente a esquece) e não reproduz o raciocínio de proporcionalidade envolvido no problema, perdendo assim a oportunidade de compreender claramente como as grandezas se relacionam. Na verdade, o problema é bastante simples. Confira!

Problema 6: Uma torneira A enche um tanque em 5 horas. Uma torneira B enche esse mesmo tanque em 15 horas. As duas torneiras juntas encherão esse tanque em quantas horas?

Solução: Vamos designar por *V* o volume desse tanque. As grandezas tempo e volume são proporcionais pois quanto maior o tempo, maior o volume despejado pela torneira e, se uma torneira despeja, por exemplo, 5 litros em 1 hora, despejará 10 litros em duas horas, 2,5 litros em meia hora e assim, sucessivamente. Com isso, podemos montar os seguintes esquemas:

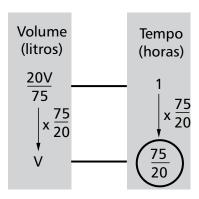


Assim, a torneira A despeja $\frac{V}{5}$ litros de água por hora no tanque e a torneira B despeja $\frac{V}{15}$ litros de água por hora nesse tanque. Portanto, as duas torneiras juntas despejarão, por hora,

$$\frac{V}{5} + \frac{V}{15} = \frac{15V + 5V}{5 \times 15} = \frac{20V}{75}$$
 litros de água.

Pensemos agora nas duas torneiras juntas como sendo uma única torneira C. Sobre a torneira C já sabemos que ela despeja $\frac{20V}{75}$ litros de água por hora. A pergunta então é: em quanto tempo a torneira C despejará V litros d'água? Essa pergunta é facilmente respondida ao fazermos:

Torneira C



Logo a torneira C, ou seja, as torneiras A e B juntas, enchem esse tanque em $\frac{75}{20}$ horas, isto é, em 3,75 horas ou, equivalentemente, em 3 horas e 45 min.

Resolva as atividades propostas abaixo.

Atividade 1: Um barco com 7 pessoas, à deriva no mar, tem suprimento de água suficiente para 28 dias. Após 4 dias, o barco recolhe mais 1 náufrago. Se o consumo diário de água por pessoa se mantiver o mesmo, em quantos dias mais durará a reserva de água?

Atividade 2: Uma escola lançou uma campanha para seus alunos arrecadarem, durante 30 dias, alimentos não perecíveis para doar a uma comunidade carente da região. Vinte alunos aceitaram a tarefa e, nos primeiros 10 dias trabalharam 3 horas diárias, arrecadando 12 kg de alimentos por dia. Animados com os resultados, 30 novos alunos somaram-se ao grupo e todos passaram a trabalhar 4 horas por dia nos dias seguintes até o término da campanha. Admitindo-se que o ritmo de coleta tenha se mantido constante, qual a quantidade de alimentos arrecadados ao final dos 30 dias de campanha?

Atividade 3: Uma caixa d'água de 1000 litros tem um furo no fundo, por onde escoa água a uma vazão constante. Às 6h da manhã de certo dia ela foi cheia e, ao meio dia desse mesmo dia, só tinha 850 litros. Quando o volume d'água restante na caixa alcançará a metade da capacidade da caixa?

Atividade 4: Uma caravana com 7 pessoas deve atravessar o Sahara em 42 dias. Seu suprimento de água permite que cada pessoa disponha de 3,5 litros por dia. Após 12 dias, a caravana encontra 3 beduínos sedentos, vítimas de uma tempestade de areia, e os acolhe. Pergunta-se:

- a) Quantos litros de água por dia caberão a cada pessoa se a caravana prosseguir sua rota como planejado?
- b) Se os membros da caravana (beduínos, inclusive) continuarem consumindo água como antes, em quantos dias, no máximo, será necessário encontrar um oásis?