

<->><->><->><->><->></->

MATERIAL ESTRUTURADO

SUBSECRETARIA DE EDUCAÇÃO

GERÊNCIA DE CURRÍCULO DA EDUCAÇÃO BÁSICA GERÊNCIA DE ENSINO MÉDIO

Matemática

14^a Semana

0000000

Equação Exponencial e representação algébrica da Função Exponencial.

2ª Série | Ensino Médio

DESCRITORES DO PAEBES

D074_M - Corresponder as representações algébrica e gráfica de uma função exponencial.

HABILIDADES DO CURRÍCULO RELACIONADAS AOS DESCRITORES

EM13MAT304 - Resolver e elaborar problemas com Funções Exponenciais nos quais seja necessário compreender e interpretar a variação das grandezas envolvidas, em contextos como o da Matemática Financeira, entre outros.

HABILIDADES OU CONHECIMENTOS PRÉVIOS

EF08MA02 - Resolver e elaborar problemas usando a relação entre potenciação e radiciação, para representar uma raiz como potência de expoente fracionário.

A equação exponencial é um tipo de equação na qual a incógnita está no expoente de pelo menos um termo. Elas são usadas para modelar situações onde um crescimento ou decrescimento a uma taxa constante é observado. O conceito de exponenciais está enraizado na noção de potenciação, que é um conceito matemático muito antigo. Historicamente, a noção de potenciação pode ser rastreada até a antiguidade, onde civilizações como os babilônios e os egípcios usavam conceitos semelhantes para lidar com multiplicações repetidas, embora não usassem a notação de potências como conhecemos hoje.

O matemático italiano Niccolò Fontana Tartaglia (1499–1557) fez importantes contribuições para o estudo de equações polinomiais, que incluíam métodos para resolver equações cúbicas e quárticas, e isso estabeleceu as bases para o entendimento moderno de equações exponenciais. A noção de funções exponenciais, no entanto, foi desenvolvida ao longo do tempo. Os matemáticos ao longo da história trabalharam em problemas que envolviam cálculos de juros compostos, que são modelados por equações exponenciais.

O avanço significativo da análise matemática durante o século XVII foi impulsionado principalmente pelas contribuições inovadoras de eminentes matemáticos da época, especialmente pelo trabalho de matemáticos como Isaac Newton (1643–1727) e Gottfried Wilhelm Leibniz (1646–1716), que também contribuiu para a compreensão mais profunda das funções exponenciais e suas propriedades. Atualmente, as equações exponenciais são fundamentais em vários campos, como economia, biologia, química, física e outras ciências, e são usadas para descrever fenômenos que exibem crescimento ou decrescimento a uma taxa constante. A capacidade de resolver equações exponenciais é uma habilidade matemática crucial e é ensinada em escolas e universidades em todo o mundo como parte do currículo de matemática.

CONCEITOS E CONTEÚDOS

Equações Exponenciais

Chamamos de equação exponencial toda equação na qual a incógnita aparece no(s) expoente(s).

Exemplos de equações exponenciais:

$$1)3^x = 81$$

$$2)2^{x-5} = 16$$

$$3)3^x = \sqrt[4]{27}$$

$$3)3^x = \sqrt[4]{27}$$
 $4)2^{3x-1} = 32^{2x}$

Para resolver algumas equações exponenciais, podemos realizar dois passos importantes:

1º) redução dos dois membros da equação a potências de mesma base;

2º) aplicação da propriedade

$$a^m = a^n \Rightarrow m = n$$
 $(a \neq 1 \ \mathsf{e} \ a > 0)$

EXERCICIOS RESOLVIDOS

$$3^x = 81$$

Para resolvermos a equação, vamos escrever 81 como 3^4

Logo:
$$3^x = 3^4 \Rightarrow x = 4$$

$$2^{x-5} = 16$$

Para resolvermos a equação, vamos escrever 16 como 2^4

$$2^{x-5}=2^4\Rightarrow x-5=4\Rightarrow x=9$$

$$3^x=\sqrt[4]{27}$$

Para resolvermos a equação, vamos escrever $\sqrt[4]{27}$ como $\sqrt[4]{3^3}$

$$3^x=\sqrt[4]{3^3}\Rightarrow 3^x=3^{rac{3}{4}}\Rightarrow x=rac{3}{4}$$

$$2^{3x-1} = 32^{2x}$$

 $\overline{\mathsf{P}}$ ara resolvermos a equação, vamos escrever $\ 32^{2x}$ como $\ 2^{10x}$

$$2^{3x-1} = 2^{10x} \Rightarrow 3x - 1 = 10x \Rightarrow x = -rac{1}{7}$$

CONCEITOS E CONTEÚDOS FUNÇÃO EXPONENCIAL

A função exponencial é utilizada para descrever e modelar o comportamento de várias situações no nosso dia a dia. Podemos observá-la, por exemplo, na matemática financeira, em situações que envolvem juros compostos, em reprodução de cultura de bactérias, e até mesmo no comportamento de novos casos da covid-19, durante a pandemia em 2020 (aproximou-se muito de um comportamento exponencial em dado momento).

Chamamos de funções exponenciais aquelas nas quais temos a variável independente aparecendo no expoente.

A função $f: \mathbb{R} \to \mathbb{R}_+^*$ definida por $f(x) = a^x$, com $a \in \mathbb{R}^+$ e $a \neq 1$ é chamada função exponencial de base a. O domínio dessa função é o conjunto \mathbb{R} (reais) e o contradomínio é \mathbb{R}_+^* (reais positivos, não nulos).

Tipos de função exponencial

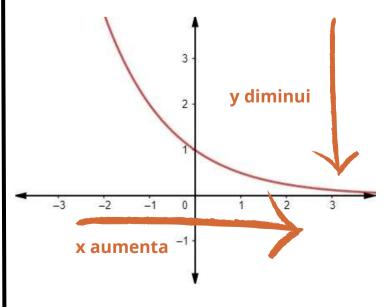
Podemos dividir a função exponencial em dois casos: crescente ou decrescente.

Crescente

O gráfico da função $f(x) = a^x$ é crescente quando a base é um número maior do que 1, ou seja, quando a > 1. Nesse caso, quanto maior o valor de x, maior será o valor de y correspondente (veja isso graficamente a seguir).

Decrescente

A função exponencial $f(x) = a^x$ é decrescente quando a base é um número maior que 0 e menor que 1, ou seja, quando 0 < a < 1. Caso ela seja decrescente, quanto maior o valor de x, menor será o valor de y correspondente (veja isso graficamente a seguir).



EXERCICIOS RESOLVIDOS

Seja a função exponencial $f:\mathbb{R} o\mathbb{R}_+^*$, definida por $f_{(x)}=4^x$, determine:

$$a)f_{(-3)}.$$
 Resolvendo $f_{(-3)}$ para $f(x)=4^x$ temos: $f_{(-3)}=(4)^{-3}$ $f_{(-3)}=rac{1}{4^3}$ $f_{(-3)}=rac{1}{64}$

 $b)f_{\left(rac{1}{2}
ight)}.$

Resolvendo $f_{(rac{1}{2})}$ para $f(x)=4^x$ temos: $f_{(rac{1}{2})}=4^{rac{1}{2}}$ $f_{(rac{1}{2})}=\sqrt{4}$ $f_{(rac{1}{2})}=2$

Seja a função exponencial $f: \{-2,1\} \to \mathbb{R}$, definida por $f_{(x)} = 5^x$, determine a imagem da função.

f é uma função exponencial crescente, então o menor valor f nesse caso será:

$$egin{aligned} f_{(-2)} &= 5^{-2} \ f_{(-2)} &= rac{1}{5^2} \ f_{(-2)} &= rac{1}{25} \end{aligned}$$

f é uma função exponencial crescente, então o maior valor de f nesse caso será:

$$f_{(1)} = 5^1 \ f_{(1)} = 5$$

Portanto o conjunto imagem é $Im = \left\{\frac{1}{25}, 5\right\}$

Seja a função exponencial $f: \mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = 3^x$, determine o valor x, para cada imagem a seguir:

a)
$$f(x) = 9$$

b)
$$f(x) = 81$$

c)
$$f(x) = 1$$

$$d) f(x) = \frac{1}{27}$$

a)
$$f(x) = 9 \Rightarrow 3^x = 9 \Rightarrow 3^x = 3^2$$

 $x = 2$

b)
$$f(x) = 81 \Rightarrow 3^x = 81 \Rightarrow 3^x = 3^4$$
 $x = 4$

c)
$$f(x) = 1 \Rightarrow 3^x = 1 \Rightarrow 3^x = 3^0$$

 $x = 0$

d)
$$f(x) = \frac{1}{27} \Rightarrow 3^x = \frac{1}{27} \Rightarrow 3^x = 3^{-3}$$

$$x = -3$$

ATIVIDADES PARA OS ESTUDANTES

Atividade 1

Determine o valor de x nas equações a seguir.

$$a)2^{x} = 32$$

$$b)5^x=125$$

$$c)9^{x} = 27$$

$$d)2^x=\frac{1}{16}$$

$$e) \left(rac{1}{3}
ight)^x = 9$$

$$f)7^x=\sqrt{7}$$

$$g)0,25^{x}=2$$

$$h)25^x=\sqrt[3]{5}$$

$$i)10^{x-1} = 1000$$

$$j)5^{1-2x} = 25$$

$$k)\left(\frac{3}{2}\right)^{3x} = \frac{16}{81}$$

$$l)2^{4x+1} = \sqrt{0,5}$$

Atividade 2

Determine o valor de x que satisfaz a equação $2^{2x+1}=2$

Atividade 3

Seja a função exponencial $f(x)=2^x$, definida por $f:\mathbb{R} o \mathbb{R}_+^*$, determine:

$$a)f_{(1)}.$$

$$b)f_{(-3)}.$$

$$c)f_{\left(rac{1}{2}
ight)}.$$

ATIVIDADES PARA OS ESTUDANTES

Atividade 4

Seja a função exponencial $f:\mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x)=\left(\frac{1}{3}\right)^x$, determine: a)f(2).

$$b) f(-2).$$

$$c)f\left(\frac{1}{2}\right).$$

Atividade 5

Seja a função exponencial $f:\{-1,4\} \to \mathbb{R}$, definida por $f(x)=3^x$, determine o conjunto imagem.

Atividade 6

Seja a função exponencial $f: \mathbb{R} \to \mathbb{R}_+^*$, definida por $f(x) = 10^x$, determine o valor x, para a imagem:

$$a)f_{(x)} = 10$$

$$b)f_{(x)} = 100$$

$$c)f_{(x)}=rac{1}{10}$$

Atividade 7

Uma determinada cultura de bactérias dobra sua população a cada hora quando exposta em um meio favorável. Em um determinado momento, essa cultura de bactérias composta de apenas 3 indivíduos é colocada em um meio favorável. Depois de quanto tempo essa população será de 3.072 indivíduos?

ATIVIDADES PARA OS ESTUDANTES

Atividade 8

Há uma lenda que credita a invenção do xadrez a um brâmane* de uma corte indiana, que, atendendo a um pedido do rei, inventou o jogo para demonstrar o valor da inteligência. O rei, encantado com o invento, ofereceu ao brâmane a escolha de uma recompensa. De acordo com essa lenda, o inventor do jogo de xadrez pediu ao rei que a recompensa fosse paga em grãos de arroz da seguinte maneira: 1 grão para a casa 1 do tabuleiro, 2 grãos para a casa 2, 4 para a casa 3, 8 para a casa 4 e assim sucessivamente. Ou seja, a quantidade de grãos para cada casa do tabuleiro correspondia ao dobro da quantidade da casa imediatamente anterior.

- a) De acordo com a lenda, qual é a quantidade de grãos de arroz correspondente à casa 6 do tabuleiro?
- b) Escreva a função que expresse a quantidade de arroz em função do número x da casa do tabuleiro.
- c)Escreva, na forma de potência, quantos grãos de arroz devem ser colocados na última casa do tabuleiro de xadrez.

^{*}De acordo com o dicionário michaelis, brâmanes: Indivíduo dos brâmanes, membros da casta hereditária sacerdotal, a mais alta da sociedade indiana; brame, brâmene, brâmine.

RESPOSTAS DAS ATIVIDADES PARA OS ESTUDANTES

Atividade 1

$$a)2^x = 32 \Rightarrow 2^x = 2^5 \Rightarrow x = 5$$

$$b)5^x=125\Rightarrow 5^x=5^3\Rightarrow x=3$$

$$(c)9^x=27\Rightarrow 9^x=3^3\Rightarrow \left(3^2\right)^x=3^3\Rightarrow 3^{2x}=3^3\Rightarrow 2x=3\Rightarrow x=rac{3}{2}$$

$$d)2^x=rac{1}{16}\Rightarrow 2^x=\left(rac{1}{16}
ight)^1\Rightarrow 2^x=\left(16
ight)^{-1}\Rightarrow 2^x=\left(2^4
ight)^{-1}\Rightarrow 2^x=2^{-4}\Rightarrow x=-4$$

$$e)igg(rac{1}{3}igg)^x=9\Rightarrow (3)^{-x}=3^2\Rightarrow -x=2\Rightarrow x=-2$$

$$f)7^x=\sqrt{7}\Rightarrow 7^x=7^{rac{1}{2}}\Rightarrow x=rac{1}{2}$$

$$g)0,25^x = 2 \Rightarrow (0,25)^x = 2^1 \Rightarrow \left(\frac{1}{4}\right)^x = 2^1 \Rightarrow (4)^{-x} = 2^1 \Rightarrow \left(2^2\right)^{-x} = 2^1 \Rightarrow 2^{-2x} = 2^1 \Rightarrow -2x = 1 \Rightarrow x = -\frac{1}{2}$$

$$h)25^x=\sqrt[3]{5}\Rightarrow \left(5^2
ight)^x=5^{rac{1}{3}}\Rightarrow 5^{2x}=5^{rac{1}{3}}\Rightarrow 2x=rac{1}{3}\Rightarrow x=rac{1}{6}$$

$$i)10^{x-1} = 1000 \Rightarrow 10^{x-1} = 10^3 \Rightarrow x - 1 = 3 \Rightarrow x = 4$$

$$(j)5^{1-2x}=25\Rightarrow 5^{1-2x}=5^2\Rightarrow 1-2x=2\Rightarrow -2x=1\Rightarrow x=-rac{1}{2}$$

$$k)\left(\frac{3}{2}\right)^{3x}=\frac{16}{81}\Rightarrow\left(\frac{3}{2}\right)^{3x}=\frac{2^4}{3^4}\Rightarrow\left(\frac{3}{2}\right)^{3x}=\left(\frac{2}{3}\right)^4\Rightarrow\left(\frac{3}{2}\right)^{3x}=\left(\frac{3}{2}\right)^{-4}\Rightarrow 3x=-4\Rightarrow x=-\frac{4}{3}$$

$$l)2^{4x+1} = \sqrt{0,5} \Rightarrow 2^{4x+1} = \sqrt{\frac{1}{2}} \Rightarrow 2^{4x+1} = \sqrt{2^{-1}} \Rightarrow 2^{4x+1} = 2^{-\frac{1}{2}} \Rightarrow 4x+1 = -\frac{1}{2} \Rightarrow 8x+2 = -1 \Rightarrow 8x = -3 \Rightarrow x = -\frac{3}{8}$$

RESPOSTAS DAS ATIVIDADES PARA OS ESTUDANTES

Atividade 2

$$2^{2x+1}=2\Rightarrow 2^{2x+1}=2^1\Rightarrow 2x+1=1\Rightarrow 2x=1-1\Rightarrow 2x=0\Rightarrow x=0$$

Atividade 3

- a) Para $f_{(1)} = 2^1$, temos $f_{(1)} = 2$
- b) Para $f_{(-3)}=2^{-3}$, temos $f_{(-3)}=2^{-3}\Rightarrow f_{(-3)}=rac{1}{2^3}\Rightarrow f_{(-3)}=rac{1}{8}$
- c) Para $\,f_{(rac{1}{2})}=2^{rac{1}{2}}$, temos $\,f_{(rac{1}{2})}=2^{rac{1}{2}}\Rightarrow f_{(rac{1}{2})}=\sqrt{2}$

Atividade 4

- a) Para $f_{(2)}=\left(rac{1}{3}
 ight)^2$, temos $f_{(2)}=\left(rac{1}{3}
 ight)^2\Rightarrow f_{(2)}=rac{1}{9}$
- b) Para $f_{(-2)}=\left(\frac{1}{3}\right)^{-2}$, temos $f_{(-2)}=\left(\frac{1}{3}\right)^{-2}\Rightarrow f_{(-2)}=3^2\Rightarrow f_{(-2)}=9$
- c) Para $f_{(\frac{1}{2})} = \left(\frac{1}{3}\right)^{\frac{1}{2}}$, temos $f_{(\frac{1}{2})} = \left(\frac{1}{3}\right)^{\frac{1}{2}} \Rightarrow f_{(\frac{1}{2})} = \sqrt{\frac{1}{3}} \Rightarrow f_{(\frac{1}{2})} = \frac{1}{\sqrt{3}} \Rightarrow f_{(\frac{1}{2})} = \frac{\sqrt{3}}{3}$

Atividade 5

f é uma função exponencial crescente, então o menor valor da imagem será:

$$f_{(-1)}=3^{-1}\Rightarrow f_{(-1)}=rac{1}{3}$$

logo o maior valor da imagem será:

$$f_{(4)} = 3^4 \Rightarrow f_{(4)} = 81$$

Portanto o conjunto imagem é $\left\{\frac{1}{3}, 81\right\}$.

Atividade 6

- a) Para $f_{(x)}=10$, temos $f_{(x)}=10^x\Rightarrow 10=10^x\Rightarrow 10^1=10^x\Rightarrow x=1$
- b) Para $f_{(x)}=100$, temos $f_{(x)}=10^x\Rightarrow 100=10^x\Rightarrow 10^2=10^x\Rightarrow x=2$
- c) Para $f_{(x)}=rac{1}{10}$, temos $f_{(x)}=10^x\Rightarrowrac{1}{10}=10^x\Rightarrow 10^{-1}=10^x\Rightarrow x=-1$

Atividade 7

A função será $\,f_{(t)}=3.2^t\,$

Logo teremos: $f_{(t)}=3.2^t\Rightarrow 3072=3.2^t\Rightarrow 1024=2^t\Rightarrow 2^{10}=2^t\Rightarrow t=10$

RESPOSTAS DAS ATIVIDADES PARA OS ESTUDANTES

Atividade 8

Sabendo que o tabuleiro de xadrez é composto por 32 casas brancas e 32 casas pretas formando um tabuleiro de 64 casas:

- a) A sequência é (1,2,4,8,16,32), portanto, na casa 6, a quantidade de grãos é 32
- b) $f_{(x)}=2^{x-1}$, sendo x um número natural de 1 a 64.
- c) 2^{63}

www.khanacademy.org. Acessado em: 08 abr 2024.

www.novaescola.org.br. Acessado em: 08 abr 2024.

https://mundoeducacao.uol.com.br/matematica/funcao-exponencial.htm acessado em: 08 abr2024

https://repositorio.utfpr.edu.br/jspui/bitstream/1/30226/1/interdisciplinaridadeotimizacaofuncao.pdf acessado em: 21 abr 2024

https://www.somatematica.com.br/emedio.php acessado em 21 abr 2024

https://cdnportaldaobmep.impa.br/portaldaobmep/uploads/material/pkywpmy4bzko8.pdf Acessado em: 21 abr 2024

https://pt.mathigon.org/timeline acessado em 21 abr 2024

https://michaelis.uol.com.br/moderno-portugues/busca/portugues-brasileiro/bramane acessado em 21 abr 2024

https://www.preparaenem.com/matematica/equacao-exponencial.htm acessado em 24 abr 2024

https://www.todamateria.com.br/funcao-exponencial-exercicios/ acessado em 24 abr 2024