

MATERIAL ESTRUTURADO

SUBSECRETARIA DE EDUCAÇÃO BÁSICA E PROFISSIONAL GERÊNCIA DE CURRÍCULO DA EDUCAÇÃO BÁSICA GERÊNCIA DE ENSINO MÉDIO

2ª Série | Ensino Médio

Matemática

25^a Semana

cccccc

Função Quadrática (Problemas de Máximo e Mínimo)

MONITORAMENTO	PEDADOGA/O: PED. PROFESSOR/A: PRO LÍDER: LID	PED.	PRO.	LID.
DESCRITOR DO SAEB	D133_M Resolver problemas que envolvam os pontos de máximo ou de mínimo de uma função do 2º grau.			
HABILIDADES DO CURRÍCULO RELACIONADAS AOS DESCRITORES	EM13MAT503 Investigar pontos de máximo ou de mínimo de funções quadráticas em contextos envolvendo superfícies, Matemática Financeira ou Cinemática, entre outros, com apoio de tecnologias digitais.			
HABILIDADES OU CONHECIMENTOS PRÉVIOS	EF09MA06/ES Compreender as funções como relações de dependência unívoca entre duas variáveis e suas representações numérica, algébrica e gráfica e utilizar esse conceito para analisar situações que envolvam relações funcionais entre duas variáveis			

CONTEXTUALIZAÇÃO

A receita máxima

Estudos de economia mostram que, para a maioria das empresas tradicionais, o preço de qualquer produto aumenta, quando a demanda é maior, de mesmo modo que se a demanda diminuir, os preços tendem a cair (diminuir). Aplicando-se dados de vendas reais, uma empresa consegue estabelecer um gráfico para oferta e demanda. Esses dados podem ser utilizados para calcular diferentes funções, no estudo da Economia, como por exemplo, função receita, custo e lucro.

Função Custo

Está relacionada ao custo de produção de um produto, pois toda empresa realiza um investimento na fabricação de uma determinada mercadoria.

Fonte: Site Grupo America

A função receita está ligada ao dinheiro arrecadado pela venda de um determinado produto.

Função Lucro

Função Receita

A função lucro é a diferença entre a função receita e a função custo.

Lucro = Receita - Custo

Caso o resultado seja positivo, houve lucro; se negativo, houve prejuízo.

Vamos ver um exemplo da aplicação dessas funções e problemas envolvendo máximos e mínimos.

Um fabricante pode produzir calçados ao custo de R\$ 20,00 o par. Estima-se que, se cada par for vendido por x reais, o fabricante venderá por mês 80 - x ($0 \le x \le 80$) pares de sapatos. Assim, o lucro mensal do fabricante é uma função do preço de venda. Qual deve ser o preço de venda, de modo que o lucro mensal seja máximo?

Fonte: Site PngFind

SUGESTÃO DE PRATICA PEDAGOGICA

Prezado(a) professor(a), nesta seção apresentamos uma sugestão de recurso para trabalhar a habilidade EM13MAT502. Para esta proposta são necessários dispositivos com acesso à internet.

Acesse o QR Code ou clique no link para ter acesso ao Geogebra

<u>Clique aqui</u>

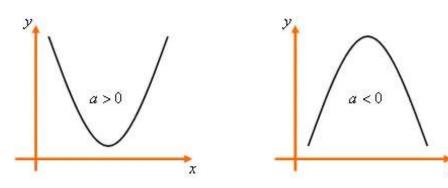
Nesta atividade é possível observar o comportamento das funções quadráticas e analisar os pontos máximo e mínimo.

CONCEITOS E CONTEÚDOS

PONTO MÁXIMO E PONTO MÍNIMO

A função quadrática $f(x)=ax^2+bx+c$ tem uma representação gráfica de uma parábola.

Como já vimos, essa parábola pode ser uma concavidade voltada para cima ou voltada baixo e isso é determinado pelo **coeficiente a** da função quadrática.



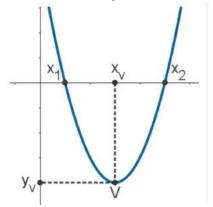
A partir dessa concavidade, a função pode assumir um valor mínimo (a > 0) ou um valor máximo (a < 0). Esses pontos são indicados pelo **vértice** da parábola, dados pelas coordenadas (Xv, Yv).

DETERMINANDO O PONTO MÁXIMO E MÍNIMO

As coordenadas do vértice podem ser determinadas pela seguinte expressão matemática:

$$x_v=rac{-b}{2a}$$
 $y_v=rac{-\Delta}{4a}$ O XV é a média das raízes da função $x_v=rac{x_1+x_2}{2}$

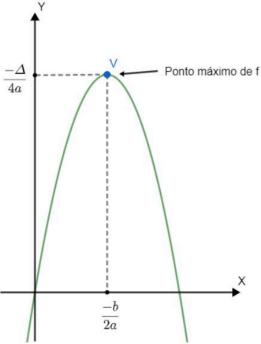
PONTOS IMPORTANTES DO GRÁFICO DA FUNÇÃO QUADRÁTICA



No gráfico, com a > 0, temos: V = vértice da parábola, com (Xv, Yv) X¹ e X² = raízes da função quadrática

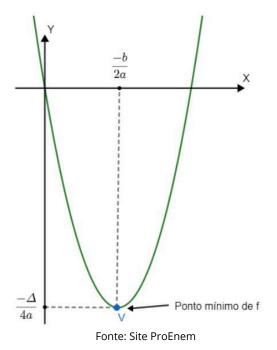
CONCEITOS E CONTEÚDOS

Se V é o vértice da parábola que representa graficamente a função quadrática, com a < 0, então V é o ponto máximo da função, sendo sua ordenada (yv), **o valor máximo da função**



Fonte: Site ProEnem

Se V é o vértice da parábola que representa graficamente a função quadrática, com a > 0, então V é o ponto mínimo da função, sendo sua ordenada (yv), **o valor mínimo da função**



EXERCICIOS RESOLVIDOS

1 Exemplo utilizado na Contextualização

Um fabricante pode produzir calçados ao custo de R\$ 20,00 o par. Estima-se que, se cada par for vendido por x reais, o fabricante venderá por mês 80 - x ($0 \le x \le 80$) pares de sapatos. Assim, o lucro mensal do fabricante é uma função do preço de venda. Qual deve ser o preço de venda, de modo que o lucro mensal seja máximo?

Inicialmente, vamos determinar as funções custo C(x), receita R(x) e lucro L(x). Custo: valor de cada calçado multiplicado pela quantidade de venda de pares de sapato.

$$C(x) = 20.(80 - x) = 1600 - 20x$$

Receita: valor da venda multiplicado pela quantidade de pares vendidos

$$R(x) = x.(80 - x) = 80x - x^2$$

Lucro: Diferença entre a função R(x) - C(x)

$$L(x) = 80x - x^2 - (1600 - 20x) = -x^2 + 100x - 1600$$

Pela função L(x), percebemos que a concavidade é voltada para baixo, então, ao buscarmos o preço da venda, para que o lucro seja máximo, vamos calcular o Xv da função. Aplicando na fórmula

$$x_v = \frac{-b}{2a}$$
 $x_v = \frac{-100}{-2} = 50$

Então, para que o fabricante tenha lucro mensal máximo, o preço de venda deve ser de R\$ 50,00

2

Uma empresa produz um determinado produto com o custo definido pela seguinte função $C(x) = x^2 - 80x + 3000$. Considerando o custo C em reais e x a quantidade de unidades produzidas, determine a quantidade de unidades para que o custo seja mínimo e o valor desse custo mínimo.

A função C(x) tem a concavidade voltada para cima, logo possui ponto mínimo. Para determinar a quantidade de unidades para que o custo seja mínimo, vamos calcular o Xv da parábola. O valor do custo mínimo pode ser obtido, calculando o Yv.

Quantidade de Unidades
$$\longrightarrow x_v = \frac{-b}{2a} \longrightarrow x_v = \frac{-(-80)}{2} = \frac{80}{2} = 40$$

Custo
$$y_v = \frac{-\Delta}{4a}$$
 \Rightarrow $y_v = \frac{-[(-80)^2 - 4.1.3000]}{4.1} = \frac{-[6400 - 12.000]}{4} = \frac{-(-5600)}{4} = 1400$

Assim, para que haja o custo mínimo de R\$ 1.400,00, devem ser produzidas 40 unidades do produto.

EXERCICIOS RESOLVIDOS

3

Uma pedra é lançada do solo verticalmente para cima. Ao fim de t segundos, atinge a altura h, em metros, dada por $h(t) = 40t - 5t^2$. Determine a altura máxima que a pedra

Pela Punção h(t), temos que a concavidade da parábola é voltada para baixo, pois - 5 < 0. Logo, essa função apresenta um ponto máximo, que representa a altura máxima que a pedra atingirá. Essa altura máxima é representada pela ordenada y do vértice da parábola.

Assim, para determinarmos essa altura máxima, vamos calcular o determinante.

$$\Delta = (40)^2 - 4 \cdot (-5) \cdot 0 = 1600$$

Vamos calcular o y do vértice, por meio da fórmula $y_v = \frac{-\Delta}{4a}$

$$y_v = \frac{-1600}{4.(-5)} = \frac{1600}{20} = 80$$

Assim, a altura máxima atingida pela pedra é de 80 m.

4

Suponha que um grilo, ao saltar do solo, tenha sua posição no espaço descrita em função do tempo (em segundos), pela expressão $h(t) = 3t - 3t^2$, onde h é a altura atingida em metros.

a) Qual a altura máxima, em metros, atingida pelo grilo?

Para determinarmos a altura máxima, vamos calcular o Yv. Determinando o valor do Δ

$$\Delta = 3^2 - 4.(-3).0 = 9$$

Determinando o Yv, temos:

$$y_v = \frac{-9}{4.(-3)} = \frac{-9}{-12} = 0,75m$$

b) Qual o tempo necessário para que o grilo atinja a altura máxima?

Neste caso, vamos determinar o valor de x do vértice, para que atinja a altura máxima.

$$x_v = \frac{-3}{2.(-3)} = \frac{-3}{-6} = 0.5s$$

Logo, o grilo leva 0,5 s para atingir a altura máxima.

ATIVIDADES PARA OS ESTUDANTES

Atividade 1

Sabe-se que, sob certo ângulo de lançamento, a altura *h* atingida por uma pedra, em metro, em função do tempo *t*, em décimo de segundo é dada pela seguinte função:

$$h(t) = -\frac{t^2}{60} + t$$

- a) Qual é a altura máxima atingida pela pedra em função do tempo?
- b) Em quanto tempo, após o lançamento, a pedra atinge a altura máxima?

Atividade 2

Uma pedra é lançada do solo verticalmente para cima. Ao fim de t segundos, atinge a altura h dada por: h (t) = 40t - 5t². Qual a altura máxima atingida pela pedra?

Atividade 3

A potência elétrica lançada em um circuito por um gerador é expressa por $P = 10i - 5i^2$, no SI, onde i é a intensidade da corrente elétrica. Calcule a potência elétrica máxima que o gerador pode obter.

Atividade 4

A respeito da função $f(x) = -4x^2 + 100$, assinale a alternativa que seja o resultado da soma entre as coordenadas x e y do vértice.

- a) 50
- b) 100
- c) 150
- d) 200

Atividade 5

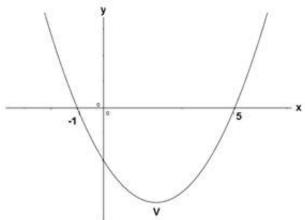
O custo de produção de um determinado artigo é dado por $C(x) = 3x^2 - 15x + 21$. Se a venda de x unidades é dada por $V(x) = 2x^2 + x$, para que o lucro L(x) = V(x) - C(x) seja máximo, devem ser vendidas:

- a) 20 unidades
- b) 16 unidades
- c) 12 unidades
- d) 8 unidades
- e) 4 unidades

ATIVIDADES PARA OS ESTUDANTES

Atividade 6

O gráfico da função $y = a.x^2 + bx + c$ está representado abaixo:



Classifique as afirmações abaixo como verdadeiras (V) ou falsas (F).

- a) () O número real c é negativo.
- b) () O número real a é positivo.
- c) () A abscissa do vértice V é negativa.
- d) () A ordenada do vértice V é positiva.
- e) () O discriminante (Δ) da equação f(x) = 0 é nulo

Atividade 7

Uma bola ao ser chutada num tiro de meta por um goleiro, numa partida de futebol, teve sua trajetória descrita pela equação $h(t) = -2t^2 + 8t$ ($t \ge 0$), onde t é o tempo medido em segundos e h(t) é a altura em metros da bola no instante t. Determine, após o chute a altura máxima atingida pela bola.

Atividade 8

Uma bola de basquete é arremessada por um jogador para o alto, percorrendo uma trajetória descrita por $h(x) = -2x^2 + 12x$, em que h é a altura, em metros, e x o tempo, em segundos. Qual foi a altura máxima atingida por esta bola?

- a) 18m
- b) 20m
- c) 22m
- d) 24m

Atividade 9

A função real f, de variável real, dada por $f(x) = -x^2 + 12x + 20$, tem um valor

- a) mínimo, igual a -16, para x = 6
- b) mínimo, igual a 16, para x = -12
- c) máximo, igual a 56, para x = 6
- d) máximo, igual a 72, para x = 12

RESOLUÇÃO PARA O PROFESSOR

Atividade 1

A partir da expressão, calculamos o Yv para determinar a altura máxima (letra a) e o Xv para determinarmos o tempo que a pedra atingiu essa altura máxima (letra b)

a) Calculando o valor de Δ

$$\Delta = 1^2 - 4.(\frac{1}{60}.0) = 1$$

Substituindo na fórmula de Yv temos:

$$y_v = \frac{-1}{4 \cdot \frac{-1}{60}} = \frac{-1}{\frac{-4}{60}} = \frac{-60}{-4} = 15$$

A altura máxima atingida pela pedra é de 15m.

b) Determinando o Xv, temos:

$$x_v = \frac{-1}{2 \cdot \frac{-1}{60}} = \frac{-1}{\frac{-2}{60}} = \frac{-60}{-2} = 30$$

O tempo em que a pedra atinge a altura máxima é de 30 décimos de segundos.

Atividade 2

A função h(t) apresenta concavidade voltada para cima. A altura máxima atingida é determinada pelo Yv da parábola.

$$y_v = \frac{-(40^2 - 4.(-5).0)}{4.(-5)} = \frac{-1600}{-20} = 80$$

A altura máxima é de 80m.

Atividade 3

Para calcularmos a potência máxima, vamos determinar o Yv.

$$y_v = \frac{-\Delta}{4a}$$

$$y_v = \frac{-(10^2)}{4.(-5)} = \frac{-100}{-20} = 5$$

Logo, a potência máxima obtida pelo gerador é 5, com suas medidas no SI.

RESOLUÇÃO PARA O PROFESSOR

Atividade 4

As coordenadas do vértice podem ser encontradas a partir das fórmulas

$$x_v = \frac{-b}{2a} \quad y_v = \frac{-\Delta}{4a}$$

Xv = 0 e Yv = 100. Logo a soma (0 + 100 = 100)

Letra B

Atividade 5

$$L(x) = (2x^2 + x) - (3x^2 - 15x + 21) = 2x^2 + x - 3x^2 + 15x - 21$$

 $L(x) = -x^2 + 16x - 21$

Para determinarmos o número de unidades x, para que o lucro seja máximo, vamos calcular o Xv, da função L(x)

$$x_v = \frac{-16}{2.(-1)} = \frac{-16}{-2} = 8$$

Para ter o lucro máximo, a quantidade de unidades a serem vendidas é igual a 8.

Letra D

Atividade 6

- a) V, pois a parábola intercepta o eixo y na parte negativa
- b) V, pois a concavidade é voltada para cima
- c) F, pois o Xv está na parte positiva do eixo x (entre 0 e 5)
- d) F, pois o Yv está na parte negativa do eixo y.
- e) F, pois a parábola intercepta em dois pontos no eixo das abscissas

Atividade 7

Para determinarmos a altura máxima atingida pela bola, calcula-se o Yv

$$y_v = -\frac{8^2 - 4.(-2).0}{4.(-2)} = \frac{-64}{-8} = 8$$

A altura máxima é de 8 metros.

RESOLUÇÃO PARA O PROFESSOR

Atividade 8

Para determinar a altura máxima, vamos calcular o Y do vértice.

$$\Delta = 12^2 - 4.(-2).0 = 144$$

$$y_v = \frac{-144}{4.(-2)} = \frac{144}{8} = 18$$

A altura máxima atingida é 18m.

Letra A

Atividade 9

Vamos calcular o vértice da função

$$x_v = \frac{-12}{-2} = 6$$

$$\Delta = 224$$

$$y_v = \frac{-244}{-4} = 56$$

Logo, o ponto máximo é 56 para x = 6.

Letra C.

GABARITO

ATIVIDADE 4: B
ATIVIDADE 5: D

ATIVIDADE 8: A

ATIVIDADE 9: C

REFERÊNCIAS

Dante, Luiz Roberto. Matemática Contexto & Aplicações. 2. ed. São Paulo: Ática, 2014.

Fonseca, Fred [et al.]. Coleção Ensino Médio 1ª Série. Belo Horizonte: Bernoulli Sistema de Ensino, 2024

Lezzi, Gelson, [et al.]. Matemática: Volume único. 4 ed. - São Paulo: Atual, 2007

Paiva, Manoel. Matemática: Paiva/ Manoel Paiva - 2 ed. - São Paulo: Moderna, 2013.

Smole, Kátia Cristina Stocco; Diniz, Maria Ignez de Souza Vieira. Matemática: ensino médio: volume 1. 6 ed. São Paulo: Saraiva, 2010.